Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tina N. Davis is active.

Publication


Featured researches published by Tina N. Davis.


Nature | 2009

Direct inhibition of the NOTCH transcription factor complex

Raymond E. Moellering; Melanie G. Cornejo; Tina N. Davis; Cristina Del Bianco; Stephen C. Blacklow; Andrew L. Kung; D. Gary Gilliland; Gregory L. Verdine; James E. Bradner

Direct inhibition of transcription factor complexes remains a central challenge in the discipline of ligand discovery. In general, these proteins lack surface involutions suitable for high-affinity binding by small molecules. Here we report the design of synthetic, cell-permeable, stabilized α-helical peptides that target a critical protein–protein interface in the NOTCH transactivation complex. We demonstrate that direct, high-affinity binding of the hydrocarbon-stapled peptide SAHM1 prevents assembly of the active transcriptional complex. Inappropriate NOTCH activation is directly implicated in the pathogenesis of several disease states, including T-cell acute lymphoblastic leukaemia (T-ALL). The treatment of leukaemic cells with SAHM1 results in genome-wide suppression of NOTCH-activated genes. Direct antagonism of the NOTCH transcriptional program causes potent, NOTCH-specific anti-proliferative effects in cultured cells and in a mouse model of NOTCH1-driven T-ALL.


Cancer Cell | 2010

A stapled p53 helix overcomes HDMX-mediated suppression of p53.

Federico Bernal; Mark Wade; Marina Godes; Tina N. Davis; David G. Whitehead; Andrew L. Kung; Geoffrey M. Wahl; Loren D. Walensky

Cancer cells neutralize p53 by deletion, mutation, proteasomal degradation, or sequestration to achieve a pathologic survival advantage. Targeting the E3 ubiquitin ligase HDM2 can lead to a therapeutic surge in p53 levels. However, the efficacy of HDM2 inhibition can be compromised by overexpression of HDMX, an HDM2 homolog that binds and sequesters p53. Here, we report that a stapled p53 helix preferentially targets HDMX, blocks the formation of inhibitory p53-HDMX complexes, induces p53-dependent transcriptional upregulation, and thereby overcomes HDMX-mediated cancer resistance in vitro and in vivo. Importantly, our analysis of p53 interaction dynamics provides a blueprint for reactivating the p53 pathway in cancer by matching HDM2, HDMX, or dual inhibitors to the appropriate cellular context.


Blood | 2009

HOXA9 is required for survival in human MLL-rearranged acute leukemias.

Joerg Faber; Andrei V. Krivtsov; Matthew C. Stubbs; Renee Wright; Tina N. Davis; Marry M. van den Heuvel-Eibrink; Christian M. Zwaan; Andrew L. Kung; Scott A. Armstrong

Leukemias that harbor translocations involving the mixed lineage leukemia gene (MLL) possess unique biologic characteristics and often have an unfavorable prognosis. Gene expression analyses demonstrate a distinct profile for MLL-rearranged leukemias with consistent high-level expression of select Homeobox genes, including HOXA9. Here, we investigated the effects of HOXA9 suppression in MLL-rearranged and MLL-germline leukemias using RNA interference. Gene expression profiling after HOXA9 suppression demonstrated co-down-regulation of a program highly expressed in human MLL-AML and murine MLL-leukemia stem cells, including HOXA10, MEIS1, PBX3, and MEF2C. We demonstrate that HOXA9 depletion in 17 human AML/ALL cell lines (7 MLL-rearranged, 10 MLL-germline) induces proliferation arrest and apoptosis specifically in MLL-rearranged cells (P = .007). Similarly, assessment of primary AMLs demonstrated that HOXA9 suppression induces apoptosis to a greater extent in MLL-rearranged samples (P = .01). Moreover, mice transplanted with HOXA9-depleted t(4;11) SEMK2 cells revealed a significantly lower leukemia burden, thus identifying a role for HOXA9 in leukemia survival in vivo. Our data indicate an important role for HOXA9 in human MLL-rearranged leukemias and suggest that targeting HOXA9 or downstream programs may be a novel therapeutic option.


Cancer Cell | 2009

Proteomic and genetic approaches identify Syk as an AML target.

Cynthia K. Hahn; Jacob E. Berchuck; Kenneth N. Ross; Rose M. Kakoza; Karl R. Clauser; Anna C. Schinzel; Linda Ross; Ilene Galinsky; Tina N. Davis; Serena J. Silver; David E. Root; Richard Stone; Daniel J. DeAngelo; Martin Carroll; William C. Hahn; Steven A. Carr; Todd R. Golub; Andrew L. Kung; Kimberly Stegmaier

Cell-based screening can facilitate the rapid identification of compounds inducing complex cellular phenotypes. Advancing a compound toward the clinic, however, generally requires the identification of precise mechanisms of action. We previously found that epidermal growth factor receptor (EGFR) inhibitors induce acute myeloid leukemia (AML) differentiation via a non-EGFR mechanism. In this report, we integrated proteomic and RNAi-based strategies to identify their off-target, anti-AML mechanism. These orthogonal approaches identified Syk as a target in AML. Genetic and pharmacological inactivation of Syk with a drug in clinical trial for other indications promoted differentiation of AML cells and attenuated leukemia growth in vivo. These results demonstrate the power of integrating diverse chemical, proteomic, and genomic screening approaches to identify therapeutic strategies for cancer.


Fertility and Sterility | 2011

Green tea epigallocatechin-3-gallate inhibits angiogenesis and suppresses vascular endothelial growth factor C/vascular endothelial growth factor receptor 2 expression and signaling in experimental endometriosis in vivo

Hui Xu; Christian M. Becker; Wai Ting Lui; Ching Yan Chu; Tina N. Davis; Andrew L. Kung; Amy E. Birsner; Robert J. D’Amato; Gene Chi Wai Man; Chi Chiu Wang

OBJECTIVE To investigate the antiangiogenesis mechanism of epigallocatechin-3-gallate (EGCG) in an endometriosis model in vivo. DESIGN Animal studies. SETTING University laboratory. ANIMAL(S) Human endometrium from women with endometriosis (n = 10) was transplanted into immunocompromised mice. INTERVENTION(S) Mice (n = 30) were randomly treated with EGCG, vitamin E (antioxidant control), or vehicle (negative control) for microvessel imaging. MAIN OUTCOME MEASURE(S) Endometriotic implants were collected for angiogenesis microarray and pathway analysis. Differentially expressed angiogenesis molecules were confirmed by quantitative polymerase chain reaction, Western blot, and immunohistochemistry. Effects of EGCG on angiogenesis signal transduction were further characterized in a human endothelial cell line. Microvessel parameters and the angiogenesis signaling pathway in endometriotic implants and endothelial cells were studied. RESULT(S) EGCG, but not vitamin E, inhibited microvessels in endometriotic implants. EGCG selectively suppressed vascular endothelial growth factor C (VEGFC) and tyrosine kinase receptor VEGF receptor 2 (VEGFR2) expression. EGCG down-regulated VEGFC/VEGFR2 signaling through c-JUN, interferon-γ, matrix metalloproteinase 9, and chemokine (C-X-C motif) ligand 3 pathways for endothelial proliferation, inflammatory response, and mobility. EGCG also suppressed VEGFC expression and reduced VEGFR2 and ERK activation in endothelial cells. VEGFC supplementation attenuated the inhibitory effects by EGCG. CONCLUSION(S) EGCG inhibited angiogenesis and suppressed VEGFC/VEGFR2 expression and signaling pathway in experimental endometriosis in vivo and endothelial cells in vitro.


Angiogenesis | 2013

Vascular endothelial growth factor C is increased in endometrium and promotes endothelial functions, vascular permeability and angiogenesis and growth of endometriosis

Hui Xu; Tao Zhang; Gene Chi Wai Man; Katie E. May; Christian M. Becker; Tina N. Davis; Andrew L. Kung; Amy E. Birsner; Robert J. D’Amato; Alice Wai Yee Wong; Chi Chiu Wang

Endometriosis is an angiogenesis-dependent disease. Many studies demonstrated inhibition of angiogenesis leads to inhibition of endometriotic growth, however underlying mechanism is still not fully understood. Our previous study suggested vascular endothelial growth factor C (VEGF-C) as a target of anti-angiogenesis therapy for endometriosis. In this study, VEGF-C in endometrium and its role in angiogenesis of endometriosis were studied. Human endometrium were obtained from women with and without endometriosis for molecular studies. VEGF-A, VEGF-B, VEGF-C and VEGF-D mRNA and proteins in eutopic and ectopic endometrium were measured. Human endothelial cells were transfected with VEGF-C siRNA in vitro, effects of VEGF-C on endothelial cell migration, invasion and tube formation were investigated in vitro. Angiogenesis was inhibited in wild type mice, vascular permeability in dermal skin was determined in vivo. Transplanted endometrium were inhibited by VEGF-C siRNA in immunocompromised mice, development, growth and angiogenesis of the experimental endometriosis were compared in vivo. The results showed that VEGF-C mRNA and protein were increased in eutopic and ectopic endometrium of endometriosis patients. VEGF-C siRNA significantly inhibited endothelial cell migration and tube formation. VEGF-C siRNA significantly inhibited development and angiogenesis of the experimental endometriotic lesions in mice. Supplementation and over-expression of VEGF-C significantly reversed the inhibitory effects on the endothelial functions, vascular permeability and endometriotic growth. In conclusion, VEGF-C is increased in endometrium and it promotes endothelial functions, vascular permeability and development of experimental endometriosis. VEGF-C is important for angiogenesis in endometriosis.


Blood | 2009

Systematic in vivo structure-function analysis of p300 in hematopoiesis

Erin A. Kimbrel; Madeleine E. Lemieux; Xiaobo Xia; Tina N. Davis; Vivienne I. Rebel; Andrew L. Kung

Cyclic adenosine monophosphate response element binding (CREB)-binding protein (CBP) and p300 are multidomain transcriptional coactivators that help assemble large regulatory complexes at sites of active transcription. Nullizygosity of CBP or p300 results in pervasive defects in hematopoiesis. To systematically assess the structural domains of p300 required for normal hematopoiesis, we used recombinase-mediated cassette exchange to create an allelic series of coisogenic embryonic stem cells, each expressing a different mutant of p300 from the endogenous locus. We found that deletion of either the KIX or CH1 domain caused profound and pervasive defects in hematopoiesis, whereas the loss of most other domains had only lineage-restricted effects. When expressed from the p300 locus, an extra copy of CBP largely compensated for a lack of p300. Surprisingly, mutation of the p300 histone acetyltransferase (HAT) domain had minimal effects on hematopoiesis, and actually increased progenitor and stem cell numbers and proliferative potential. Our results suggest that, in distinct contrast to other organ systems, HAT activity does not provide a critical function for hematopoietic development and emphasizes the importance of enzyme-independent functions of p300.


Molecular Imaging | 2009

In Vivo Pharmacodynamic Imaging of Proteasome Inhibition

Erin A. Kimbrel; Tina N. Davis; James E. Bradner; Andrew L. Kung

Inhibiting the proteolytic activity of the 26S proteasome has been shown to have selective apoptotic effects on cancer cells and to be clinically efficacious in certain malignancies. There is an unmet medical need for additional proteasome inhibitors, and their development will be facilitated by surrogate markers of proteasome function. Toward this end, ectopic fusion of the destruction domain from ornithine decarboxylase (ODC) to reporter proteins is often used for assessing proteasome function. For luciferase-based reporters, we hypothesized that the oxygen-dependent destruction domain (ODD) from hypoxia-inducible factor 1α (HIF-1α) may provide improved sensitivity over luciferase-ODC, owing to its extremely rapid turnover by the proteasome (HIF-1α has a half-life of less than 5 minutes). In the current study, we show that ODD-luciferase affords a greater dynamic range and faster kinetics than luciferase-ODC in sensing proteasome inhibition in vitro. Importantly, ODD-luciferase also serves as an effective in vivo marker of proteasome function in xenograft tumor models, with inhibition being detected by noninvasive imaging within 3 hours of bortezomib administration. These data establish ODD-luciferase as a surrogate marker of proteasome function that can be used both in vitro and in vivo for the development of novel proteasome inhibitors.


Clinical Cancer Research | 2015

Selective Inhibition of HDAC1 and HDAC2 as a Potential Therapeutic Option for B-ALL

Matthew C. Stubbs; Wonil Kim; Megan A. Bariteau; Tina N. Davis; Sridhar Vempati; Janna Minehart; Matthew Witkin; Jun Qi; Andrei V. Krivtsov; James E. Bradner; Andrew L. Kung; Scott A. Armstrong

Purpose: Histone deacetylase inhibitors (HDACi) have recently emerged as efficacious therapies that target epigenetic mechanisms in hematologic malignancies. One such hematologic malignancy, B-cell acute lymphoblastic leukemia (B-ALL), may be highly dependent on epigenetic regulation for leukemia development and maintenance, and thus sensitive to small-molecule inhibitors that target epigenetic mechanisms. Experimental Design: A panel of B-ALL cell lines was tested for sensitivity to HDACi with varying isoform sensitivity. Isoform-specific shRNAs were used as further validation of HDACs as relevant therapeutic targets in B-ALL. Mouse xenografts of B-cell malignancy–derived cell lines and a pediatric B-ALL were used to demonstrate pharmacologic efficacy. Results: Nonselective HDAC inhibitors were cytotoxic to a panel of B-ALL cell lines as well as to xenografted human leukemia patient samples. Assessment of isoform-specific HDACi indicated that targeting HDAC1-3 with class I HDAC-specific inhibitors was sufficient to inhibit growth of B-ALL cell lines. Furthermore, shRNA-mediated knockdown of HDAC1 or HDAC2 resulted in growth inhibition in these cells. We then assessed a compound that specifically inhibits only HDAC1 and HDAC2. This compound suppressed growth and induced apoptosis in B-ALL cell lines in vitro and in vivo, whereas it was far less effective against other B-cell–derived malignancies. Conclusions: Here, we show that HDAC inhibitors are a potential therapeutic option for B-ALL, and that a more specific inhibitor of HDAC1 and HDAC2 could be therapeutically useful for patients with B-ALL. Clin Cancer Res; 21(10); 2348–58. ©2015 AACR.


PLOS Biology | 2018

Preservation of myocardial contractility during acute hypoxia with OMX-CV, a novel oxygen delivery biotherapeutic

Jason Boehme; Natacha Le Moan; Rebecca Johnson Kameny; Alexandra Loucks; Michael Johengen; Amy Lesneski; Wenhui Gong; Tina N. Davis; Kevin Tanaka; Andrew Davis; Youping He; Janel Long-Boyle; Vijay Ivaturi; Jogarao Gobburu; Jonathan A. Winger; Stephen P. L. Cary; Sanjeev A. Datar; Jeffrey R. Fineman; Ana Krtolica; Emin Maltepe

The heart exhibits the highest basal oxygen (O2) consumption per tissue mass of any organ in the body and is uniquely dependent on aerobic metabolism to sustain contractile function. During acute hypoxic states, the body responds with a compensatory increase in cardiac output that further increases myocardial O2 demand, predisposing the heart to ischemic stress and myocardial dysfunction. Here, we test the utility of a novel engineered protein derived from the heme-based nitric oxide (NO)/oxygen (H-NOX) family of bacterial proteins as an O2 delivery biotherapeutic (Omniox-cardiovascular [OMX-CV]) for the hypoxic myocardium. Because of their unique binding characteristics, H-NOX–based variants effectively deliver O2 to hypoxic tissues, but not those at physiologic O2 tension. Additionally, H-NOX–based variants exhibit tunable binding that is specific for O2 with subphysiologic reactivity towards NO, circumventing a significant toxicity exhibited by hemoglobin (Hb)-based O2 carriers (HBOCs). Juvenile lambs were sedated, mechanically ventilated, and instrumented to measure cardiovascular parameters. Biventricular admittance catheters were inserted to perform pressure-volume (PV) analyses. Systemic hypoxia was induced by ventilation with 10% O2. Following 15 minutes of hypoxia, the lambs were treated with OMX-CV (200 mg/kg IV) or vehicle. Acute hypoxia induced significant increases in heart rate (HR), pulmonary blood flow (PBF), and pulmonary vascular resistance (PVR) (p < 0.05). At 1 hour, vehicle-treated lambs exhibited severe hypoxia and a significant decrease in biventricular contractile function. However, in OMX-CV–treated animals, myocardial oxygenation was improved without negatively impacting systemic or PVR, and both right ventricle (RV) and left ventricle (LV) contractile function were maintained at pre-hypoxic baseline levels. These data suggest that OMX-CV is a promising and safe O2 delivery biotherapeutic for the preservation of myocardial contractility in the setting of acute hypoxia.

Collaboration


Dive into the Tina N. Davis's collaboration.

Top Co-Authors

Avatar

Andrew L. Kung

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ana Krtolica

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge