Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tina Rönn is active.

Publication


Featured researches published by Tina Rönn.


Diabetologia | 2008

Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion.

Charlotte Ling; S Del Guerra; R Lupi; Tina Rönn; Charlotte Granhall; Holger Luthman; Pellegrino Masiello; Piero Marchetti; Leif Groop; S. Del Prato

Aims/hypothesisInsulin secretion in pancreatic islets is dependent upon mitochondrial function and production of ATP. The transcriptional coactivator peroxisome proliferator activated receptor gamma coactivator-1 alpha (protein PGC-1α; gene PPARGC1A) is a master regulator of mitochondrial genes and its expression is decreased and related to impaired oxidative phosphorylation in muscle from patients with type 2 diabetes. Whether it plays a similar role in human pancreatic islets is not known. We therefore investigated if PPARGC1A expression is altered in islets from patients with type 2 diabetes and whether this expression is influenced by genetic (PPARGC1A Gly482Ser polymorphism) and epigenetic (DNA methylation) factors. We also tested if experimental downregulation of PPARGC1A expression in human islets influenced insulin secretion.MethodsThe PPARGC1A Gly482Ser polymorphism was genotyped in human pancreatic islets from 48 non-diabetic and 12 type 2 diabetic multi-organ donors and related to PPARGC1A mRNA expression. DNA methylation of the PPARGC1A promoter was analysed in pancreatic islets from ten type 2 diabetic and nine control donors. Isolated human islets were transfected with PPARGC1A silencing RNA (siRNA).ResultsPPARGC1A mRNA expression was reduced by 90% (p < 0.005) and correlated with the reduction in insulin secretion in islets from patients with type 2 diabetes. After downregulation of PPARGC1A expression in human islets by siRNA, insulin secretion was reduced by 41% (p ≤ 0. 01). We were able to ascribe reduced PPARGC1A expression in islets to both genetic and epigenetic factors, i.e. a common PPARGC1A Gly482Ser polymorphism was associated with reduced PPARGC1A mRNA expression (p < 0.00005) and reduced insulin secretion (p < 0.05). In support of an epigenetic influence, the PPARGC1A gene promoter showed a twofold increase in DNA methylation in diabetic islets compared with non-diabetic islets (p < 0.04).Conclusions/interpretationWe have shown for the first time that PPARGC1A might be important in human islet insulin secretion and that expression of PPARGC1A in human islets can be regulated by both genetic and epigenetic factors.


PLOS Genetics | 2013

A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue.

Tina Rönn; Petr Volkov; Cajsa Davegårdh; Tasnim Dayeh; Elin Hall; Anders Olsson; Emma Nilsson; Åsa Tornberg; Marloes Dekker Nitert; Karl-Fredrik Eriksson; Helena A. Jones; Leif Groop; Charlotte Ling

Epigenetic mechanisms are implicated in gene regulation and the development of different diseases. The epigenome differs between cell types and has until now only been characterized for a few human tissues. Environmental factors potentially alter the epigenome. Here we describe the genome-wide pattern of DNA methylation in human adipose tissue from 23 healthy men, with a previous low level of physical activity, before and after a six months exercise intervention. We also investigate the differences in adipose tissue DNA methylation between 31 individuals with or without a family history of type 2 diabetes. DNA methylation was analyzed using Infinium HumanMethylation450 BeadChip, an array containing 485,577 probes covering 99% RefSeq genes. Global DNA methylation changed and 17,975 individual CpG sites in 7,663 unique genes showed altered levels of DNA methylation after the exercise intervention (q<0.05). Differential mRNA expression was present in 1/3 of gene regions with altered DNA methylation, including RALBP1, HDAC4 and NCOR2 (q<0.05). Using a luciferase assay, we could show that increased DNA methylation in vitro of the RALBP1 promoter suppressed the transcriptional activity (p = 0.03). Moreover, 18 obesity and 21 type 2 diabetes candidate genes had CpG sites with differences in adipose tissue DNA methylation in response to exercise (q<0.05), including TCF7L2 (6 CpG sites) and KCNQ1 (10 CpG sites). A simultaneous change in mRNA expression was seen for 6 of those genes. To understand if genes that exhibit differential DNA methylation and mRNA expression in human adipose tissue in vivo affect adipocyte metabolism, we silenced Hdac4 and Ncor2 respectively in 3T3-L1 adipocytes, which resulted in increased lipogenesis both in the basal and insulin stimulated state. In conclusion, exercise induces genome-wide changes in DNA methylation in human adipose tissue, potentially affecting adipocyte metabolism.


PLOS Genetics | 2014

Genome-Wide DNA Methylation Analysis of Human Pancreatic Islets from Type 2 Diabetic and Non-Diabetic Donors Identifies Candidate Genes That Influence Insulin Secretion

Tasnim Dayeh; Petr Volkov; Sofia Salö; Elin Hall; Emma Nilsson; Anders Olsson; Clare L. Kirkpatrick; Claes B. Wollheim; Lena Eliasson; Tina Rönn; Karl Bacos; Charlotte Ling

Impaired insulin secretion is a hallmark of type 2 diabetes (T2D). Epigenetics may affect disease susceptibility. To describe the human methylome in pancreatic islets and determine the epigenetic basis of T2D, we analyzed DNA methylation of 479,927 CpG sites and the transcriptome in pancreatic islets from T2D and non-diabetic donors. We provide a detailed map of the global DNA methylation pattern in human islets, β- and α-cells. Genomic regions close to the transcription start site showed low degrees of methylation and regions further away from the transcription start site such as the gene body, 3′UTR and intergenic regions showed a higher degree of methylation. While CpG islands were hypomethylated, the surrounding 2 kb shores showed an intermediate degree of methylation, whereas regions further away (shelves and open sea) were hypermethylated in human islets, β- and α-cells. We identified 1,649 CpG sites and 853 genes, including TCF7L2, FTO and KCNQ1, with differential DNA methylation in T2D islets after correction for multiple testing. The majority of the differentially methylated CpG sites had an intermediate degree of methylation and were underrepresented in CpG islands (∼7%) and overrepresented in the open sea (∼60%). 102 of the differentially methylated genes, including CDKN1A, PDE7B, SEPT9 and EXOC3L2, were differentially expressed in T2D islets. Methylation of CDKN1A and PDE7B promoters in vitro suppressed their transcriptional activity. Functional analyses demonstrated that identified candidate genes affect pancreatic β- and α-cells as Exoc3l silencing reduced exocytosis and overexpression of Cdkn1a, Pde7b and Sept9 perturbed insulin and glucagon secretion in clonal β- and α-cells, respectively. Together, our data can serve as a reference methylome in human islets. We provide new target genes with altered DNA methylation and expression in human T2D islets that contribute to perturbed insulin and glucagon secretion. These results highlight the importance of epigenetics in the pathogenesis of T2D.


Diabetes | 2012

Impact of an Exercise Intervention on DNA Methylation in Skeletal Muscle From First-Degree Relatives of Patients With Type 2 Diabetes

Marloes Dekker Nitert; Tasnim Dayeh; Peter Volkov; Targ Elgzyri; Elin Hall; Emma Nilsson; Beatrice Yang; Stefan Lang; Hemang Parikh; Ylva Wessman; Holger Weishaupt; Joanne L. Attema; Mia Abels; Nils Wierup; Peter Almgren; Per-Anders Jansson; Tina Rönn; Ola Hansson; Karl-Frederik Eriksson; Leif Groop; Charlotte Ling

To identify epigenetic patterns, which may predispose to type 2 diabetes (T2D) due to a family history (FH) of the disease, we analyzed DNA methylation genome-wide in skeletal muscle from individuals with (FH+) or without (FH−) an FH of T2D. We found differential DNA methylation of genes in biological pathways including mitogen-activated protein kinase (MAPK), insulin, and calcium signaling (P ≤ 0.007) and of individual genes with known function in muscle, including MAPK1, MYO18B, HOXC6, and the AMP-activated protein kinase subunit PRKAB1 in skeletal muscle of FH+ compared with FH− men. We further validated our findings from FH+ men in monozygotic twin pairs discordant for T2D, and 40% of 65 analyzed genes exhibited differential DNA methylation in muscle of both FH+ men and diabetic twins. We further examined if a 6-month exercise intervention modifies the genome-wide DNA methylation pattern in skeletal muscle of the FH+ and FH− individuals. DNA methylation of genes in retinol metabolism and calcium signaling pathways (P < 3 × 10−6) and with known functions in muscle and T2D including MEF2A, RUNX1, NDUFC2, and THADA decreased after exercise. Methylation of these human promoter regions suppressed reporter gene expression in vitro. In addition, both expression and methylation of several genes, i.e., ADIPOR1, BDKRB2, and TRIB1, changed after exercise. These findings provide new insights into how genetic background and environment can alter the human epigenome.


Diabetes | 2014

Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes

Emma Nilsson; Per-Anders Jansson; Alexander Perfilyev; Petr Volkov; Maria Pedersen; Maria Svensson; Pernille Poulsen; Rasmus Ribel-Madsen; Nancy L. Pedersen; Peter Almgren; João Fadista; Tina Rönn; Bente Klarlund-Pedersen; Camilla Scheele; Allan Vaag; Charlotte Ling

Genetics, epigenetics, and environment may together affect the susceptibility for type 2 diabetes (T2D). Our aim was to dissect molecular mechanisms underlying T2D using genome-wide expression and DNA methylation data in adipose tissue from monozygotic twin pairs discordant for T2D and independent case-control cohorts. In adipose tissue from diabetic twins, we found decreased expression of genes involved in oxidative phosphorylation; carbohydrate, amino acid, and lipid metabolism; and increased expression of genes involved in inflammation and glycan degradation. The most differentially expressed genes included ELOVL6, GYS2, FADS1, SPP1 (OPN), CCL18, and IL1RN. We replicated these results in adipose tissue from an independent case-control cohort. Several candidate genes for obesity and T2D (e.g., IRS1 and VEGFA) were differentially expressed in discordant twins. We found a heritable contribution to the genome-wide DNA methylation variability in twins. Differences in methylation between monozygotic twin pairs discordant for T2D were subsequently modest. However, 15,627 sites, representing 7,046 genes including PPARG, KCNQ1, TCF7L2, and IRS1, showed differential DNA methylation in adipose tissue from unrelated subjects with T2D compared with control subjects. A total of 1,410 of these sites also showed differential DNA methylation in the twins discordant for T2D. For the differentially methylated sites, the heritability estimate was 0.28. We also identified copy number variants (CNVs) in monozygotic twin pairs discordant for T2D. Taken together, subjects with T2D exhibit multiple transcriptional and epigenetic changes in adipose tissue relevant to the development of the disease.


Journal of Clinical Investigation | 2007

Genetic and epigenetic factors are associated with expression of respiratory chain component NDUFB6 in human skeletal muscle.

Charlotte Ling; Pernille Poulsen; Stina Simonsson; Tina Rönn; Johan Holmkvist; Peter Almgren; Per Hagert; Emma Nilsson; Amanda G. Mabey; Peter Nilsson; Allan Vaag; Leif Groop

Insulin resistance and type 2 diabetes are associated with decreased expression of genes that regulate oxidative phosphorylation in skeletal muscle. To determine whether this defect might be inherited or acquired, we investigated the association of genetic, epigenetic, and nongenetic factors with expression of NDUFB6, a component of the respiratory chain that is decreased in muscle from diabetic patients. Expression of NDUFB6 was influenced by age, with lower gene expression in muscle of elderly subjects. Heritability of NDUFB6 expression in muscle was estimated to be approximately 60% in twins. A polymorphism in the NDUFB6 promoter region that creates a possible DNA methylation site (rs629566, A/G) was associated with a decline in muscle NDUFB6 expression with age. Although young subjects with the rs629566 G/G genotype exhibited higher muscle NDUFB6 expression, this genotype was associated with reduced expression in elderly subjects. This was subsequently explained by the finding of increased DNA methylation in the promoter of elderly, but not young, subjects carrying the rs629566 G/G genotype. Furthermore, the degree of DNA methylation correlated negatively with muscle NDUFB6 expression, which in turn was associated with insulin sensitivity. Our results demonstrate that genetic, epigenetic, and nongenetic factors associate with NDUFB6 expression in human muscle and suggest that genetic and epigenetic factors may interact to increase age-dependent susceptibility to insulin resistance.


The Journal of Clinical Endocrinology and Metabolism | 2010

Deoxyribonucleic Acid Methylation and Gene Expression of PPARGC1A in Human Muscle Is Influenced by High-Fat Overfeeding in a Birth-Weight-Dependent Manner

Charlotte Brøns; Stine Jacobsen; Emma Nilsson; Tina Rönn; Christine B. Jensen; Heidi Storgaard; Pernille Poulsen; Leif Groop; Charlotte Ling; Arne Astrup; Allan Vaag

CONTEXT Low birth weight (LBW) and unhealthy diets are risk factors of metabolic disease including type 2 diabetes (T2D). Genetic, nongenetic, and epigenetic data propose a role of the key metabolic regulator peroxisome proliferator-activated receptor gamma, coactivator 1alpha (PPARGC1A) in the development of T2D. OBJECTIVE Our objective was to investigate gene expression and DNA methylation of PPARGC1A and coregulated oxidative phosphorylation (OXPHOS) genes in LBW and normal birth weight (NBW) subjects during control and high-fat diets. DESIGN, SUBJECTS, AND MAIN OUTCOME MEASURES: Twenty young healthy men with LBW and 26 matched NBW controls were studied after 5 d high-fat overfeeding (+50% calories) and after a control diet in a randomized manner. Hyperinsulinemic-euglycemic clamps were performed and skeletal muscle biopsies excised. DNA methylation and gene expression were measured using bisulfite sequencing and quantitative real-time PCR, respectively. RESULTS When challenged with high-fat overfeeding, LBW subjects developed peripheral insulin resistance and reduced PPARGC1A and OXPHOS (P < 0.05) gene expression. PPARGC1A methylation was significantly higher in LBW subjects (P = 0.0002) during the control diet. However, PPARGC1A methylation increased in only NBW subjects after overfeeding in a reversible manner. DNA methylation of PPARGC1A did not correlate with mRNA expression. CONCLUSIONS LBW subjects developed peripheral insulin resistance and decreased gene expression of PPARGC1A and OXPHOS genes when challenged with fat overfeeding. The extent to which our finding of a constitutively increased DNA methylation in the PPARGC1A promoter in LBW subjects may contribute needs to be determined. We provide the first experimental support in humans that DNA methylation induced by overfeeding is reversible.


Diabetologia | 2008

Age influences DNA methylation and gene expression of COX7A1 in human skeletal muscle

Tina Rönn; Pernille Poulsen; Ola Hansson; Johan Holmkvist; Peter Almgren; Peter Nilsson; Tiinamaija Tuomi; B Isomaa; Leif Groop; Allan Vaag; Charlotte Ling

Aims/hypothesisReduced oxidative capacity of the mitochondria in skeletal muscle has been suggested to contribute to insulin resistance and type 2 diabetes. Moreover, a set of genes influencing oxidative phosphorylation (OXPHOS) is downregulated in diabetic muscle. Here we studied whether genetic, epigenetic and non-genetic factors influence a component of the respiratory chain, COX7A1, previously shown to be downregulated in skeletal muscle from patients with type 2 diabetes. The specific aims were to: (1) evaluate the impact of genetic (single nucleotide polymorphisms [SNPs]), epigenetic (DNA methylation) and non-genetic (age) factors on the expression of COX7A1 in human skeletal muscle; and (2) investigate whether common variants in the COX7A1 gene are associated with increased risk of type 2 diabetes.MethodsCOX7A1 mRNA expression was analysed in muscle biopsies from young (n = 110) and elderly (n = 86) non-diabetic twins and related to measures of in vivo metabolism. Genetic variants (three SNPs) from the COX7A1 locus were genotyped in the twins and in two independent type 2 diabetes case–control cohorts (n = 1466 and 6380, respectively). DNA methylation of the COX7A1 promoter was analysed in a subset of twins (ten young, ten elderly) using bisulphite sequencing.ResultsWhile DNA methylation of the COX7A1 promoter was increased in muscle from elderly compared with young twins (19.9 ± 8.3% vs 1.8 ± 2.7%; p = 0.035), the opposite was found for COX7A1 mRNA expression (elderly 1.00 ± 0.05 vs young 1.68 ± 0.06; p = 0.0005). The heritability of COX7A1 expression was estimated to be 50% in young and 72% in elderly twins. One of the polymorphisms investigated, rs753420, influenced basal COX7A1 expression in muscle of young (p = 0.0001) but not of elderly twins. The transcript level of COX7A1 was associated with increased in vivo glucose uptake and


Diabetologia | 2013

Identification of CpG-SNPs associated with type 2 diabetes and differential DNA methylation in human pancreatic islets

Tasnim Dayeh; Anders Olsson; Petr Volkov; Peter Almgren; Tina Rönn; Charlotte Ling


Human Molecular Genetics | 2015

Impact of age, BMI and HbA1c levels on the genome-wide DNA methylation and mRNA expression patterns in human adipose tissue and identification of epigenetic biomarkers in blood

Tina Rönn; Petr Volkov; Linn Gillberg; Milana Kokosar; Alexander Perfilyev; Anna Louisa Jacobsen; Sine W. Jørgensen; Charlotte Brøns; Per-Anders Jansson; Karl-Fredrik Eriksson; Oluf Pedersen; Torben Hansen; Leif Groop; Elisabet Stener-Victorin; Allan Vaag; Emma Nilsson; Charlotte Ling

\mathop V\limits^ \cdot {\text{O}}_{{\text{2max}}}

Collaboration


Dive into the Tina Rönn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge