Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ting Chen is active.

Publication


Featured researches published by Ting Chen.


EMBO Reports | 2012

A matter of life and death: self‐renewal in stem cells

Elaine Fuchs; Ting Chen

If Narcissus could have self‐renewed even once on seeing his own reflection, he would have died a happy man. Stem cells, on the other hand, have an enormous capacity for self‐renewal; in other words, the ability to replicate and generate more of the same. In adult organisms, stem cells reside in specialized niches within each tissue. They replenish tissue cells that are lost during normal homeostasis, and on injury they repair damaged tissue. The ability of a stem cell to self‐renew is governed by the dynamic interaction between the intrinsic proteins it expresses and the extrinsic signals that it receives from the niche microenvironment. Understanding the mechanisms governing when to proliferate and when to differentiate is vital, not only to normal stem cell biology, but also to ageing and cancer. This review focuses on elucidating conceptually, experimentally and mechanistically, our understanding of adult stem cell self‐renewal. We use skin as a paradigm for discussing many of the salient points about this process, but also draw on the knowledge gained from these and other adult stem cell systems to delineate shared underlying principles, as well as highlight mechanistic distinctions among adult tissue stem cells. By doing so, we pinpoint important questions that still await answers.


Nature | 2012

An RNA interference screen uncovers a new molecule in stem cell self-renewal and long-term regeneration

Ting Chen; Evan Heller; Slobodan Beronja; Naoki Oshimori; Nicole Stokes; Elaine Fuchs

Adult stem cells sustain tissue maintenance and regeneration throughout the lifetime of an animal. These cells often reside in specific signalling niches that orchestrate the stem cell’s balancing act between quiescence and cell-cycle re-entry based on the demand for tissue regeneration. How stem cells maintain their capacity to replenish themselves after tissue regeneration is poorly understood. Here we use RNA-interference-based loss-of-function screening as a powerful approach to uncover transcriptional regulators that govern the self-renewal capacity and regenerative potential of stem cells. Hair follicle stem cells provide an ideal model. These cells have been purified and characterized from their native niche in vivo and, in contrast to their rapidly dividing progeny, they can be maintained and passaged long-term in vitro. Focusing on the nuclear proteins and/or transcription factors that are enriched in stem cells compared with their progeny, we screened ∼2,000 short hairpin RNAs for their effect on long-term, but not short-term, stem cell self-renewal in vitro. To address the physiological relevance of our findings, we selected one candidate that was uncovered in the screen: TBX1. This transcription factor is expressed in many tissues but has not been studied in the context of stem cell biology. By conditionally ablating Tbx1 in vivo, we showed that during homeostasis, tissue regeneration occurs normally but is markedly delayed. We then devised an in vivo assay for stem cell replenishment and found that when challenged with repetitive rounds of regeneration, the Tbx1-deficient stem cell niche becomes progressively depleted. Addressing the mechanism of TBX1 action, we discovered that TBX1 acts as an intrinsic rheostat of BMP signalling: it is a gatekeeper that governs the transition between stem cell quiescence and proliferation in hair follicles. Our results validate the RNA interference screen and underscore its power in unearthing new molecules that govern stem cell self-renewal and tissue-regenerative potential.


Molecular and Cellular Biology | 2004

Nucleocytoplasmic Shuttling of JAZ, a New Cargo Protein for Exportin-5

Ting Chen; Amy M. Brownawell; Ian G. Macara

ABSTRACT Exportin-5 is a nuclear export receptor for certain classes of double-stranded RNA (dsRNA), including pre-micro-RNAs, viral hairpin RNAs, and some tRNAs. It can also export the RNA binding proteins ILF3 and elongation factor EF1A. However, the rules that determine which RNA binding proteins are exportin-5 cargoes remain unclear. JAZ possesses an unusual dsRNA binding domain consisting of multiple C2H2 zinc fingers. We found that JAZ binds to exportin-5 in a Ran-GTP- and dsRNA-dependent manner. Exportin-5 stimulates JAZ shuttling, and gene silencing of exportin-5 reduces shuttling. Recombinant exportin-5 also stimulates nuclear export of JAZ in permeabilized cells. JAZ also binds to ILF3, and surprisingly, this interaction is RNA independent, even though it requires the dsRNA binding domains of ILF3. Exportin-5, JAZ, and ILF3 can form a heteromeric complex with Ran-GTP and dsRNA, and JAZ increases ILF3 binding to exportin-5. JAZ does not contain a classical nuclear localization signal, and in digitonin-permeabilized cells, nuclear accumulation of JAZ does not require energy or cytosol. Nonetheless, low temperatures prevent JAZ import, suggesting that nuclear entry does not occur via simple diffusion. Together, these data suggest that JAZ is exported by exportin-5 but translocates back into nuclei by a facilitated diffusion mechanism.


Nature Genetics | 2016

Stabilizing mutations of KLHL24 ubiquitin ligase cause loss of keratin 14 and human skin fragility

Lin Z; Li S; Feng C; Yang S; Wang H; Ma D; Zhang J; Gou M; Bu D; Zhang T; Kong X; Xinyue Wang; Sarig O; Ren Y; Dai L; Liu H; Li F; Hu Y; Padalon-Brauch G; Vodo D; Zhou F; Ting Chen; Deng H; Sprecher E; Yang Y; Xu Tan

Skin integrity is essential for protection from external stress and trauma. Defects in structural proteins such as keratins cause skin fragility, epitomized by epidermolysis bullosa (EB), a life-threatening disorder. Here we show that dominant mutations of KLHL24, encoding a cullin 3-RBX1 ubiquitin ligase substrate receptor, cause EB. We have identified start-codon mutations in the KLHL24 gene in five patients with EB. These mutations lead to truncated KLHL24 protein lacking the initial 28 amino acids (KLHL24-ΔN28). KLHL24-ΔN28 is more stable than its wild-type counterpart owing to abolished autoubiquitination. We have further identified keratin 14 (KRT14) as a KLHL24 substrate and found that KLHL24-ΔN28 induces excessive ubiquitination and degradation of KRT14. Using a knock-in mouse model, we have confirmed that the Klhl24 mutations lead to stabilized Klhl24-ΔN28 and cause Krt14 degradation. Our findings identify a new disease-causing mechanism due to dysregulation of autoubiquitination and open new avenues for the treatment of related disorders.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Efficient in vivo gene editing using ribonucleoproteins in skin stem cells of recessive dystrophic epidermolysis bullosa mouse model

Wenbo Wu; Zhiwei Lu; Fei Li; Nannan Qian; Jinzhi Duan; Yu Zhang; Fengchao Wang; Ting Chen

Significance The prokaryotic CRISPR/Cas9 system has recently been applied in genome editing in mammalian cells with the potential to bring curative therapies to patients with genetic diseases. However, efficient in vivo delivery of this machinery remains challenging for most tissue types. We now developed a method to locally deliver Cas9/sgRNA ribonucleoproteins into the skin of postnatal mice, which was used to correct genetic defects in skin stem cells of postnatal recessive dystrophic epidermolysis bullosa (RDEB) mice. Our study provides proof-of-principle evidence that Cas9/sgRNA ribonucleoprotein-based gene therapies can be applied to restore collagen VII protein function in postnatal RDEB mice, suggesting that the Cas9/sgRNA ribonucleoprotein-based gene therapy may offer curative treatment for RDEB and other genetic disorders. The prokaryotic CRISPR/Cas9 system has recently emerged as a powerful tool for genome editing in mammalian cells with the potential to bring curative therapies to patients with genetic diseases. However, efficient in vivo delivery of this genome editing machinery and indeed the very feasibility of using these techniques in vivo remain challenging for most tissue types. Here, we show that nonreplicable Cas9/sgRNA ribonucleoproteins can be used to correct genetic defects in skin stem cells of postnatal recessive dystrophic epidermolysis bullosa (RDEB) mice. We developed a method to locally deliver Cas9/sgRNA ribonucleoproteins into the skin of postnatal mice. This method results in rapid gene editing in epidermal stem cells. Using this method, we show that Cas9/sgRNA ribonucleoproteins efficiently excise exon80, which covers the point mutation in our RDEB mouse model, and thus restores the correct localization of the collagen VII protein in vivo. The skin blistering phenotype is also significantly ameliorated after treatment. This study provides an in vivo gene correction strategy using ribonucleoproteins as curative treatment for genetic diseases in skin and potentially in other somatic tissues.


Journal of Molecular Cell Biology | 2015

mTOR signaling promotes stem cell activation via counterbalancing BMP-mediated suppression during hair regeneration

Zhili Deng; Xiaohua Lei; Xudong Zhang; Huishan Zhang; Shuang Liu; Qi Chen; Huimin Hu; Xinyue Wang; Lina Ning; Yujing Cao; Tongbiao Zhao; Jiaxi Zhou; Ting Chen; Enkui Duan

Hair follicles (HFs) undergo cycles of degeneration (catagen), rest (telogen), and regeneration (anagen) phases. Anagen begins when the hair follicle stem cells (HFSCs) obtain sufficient activation cues to overcome suppressive signals, mainly the BMP pathway, from their niche cells. Here, we unveil that mTOR complex 1 (mTORC1) signaling is activated in HFSCs, which coincides with the HFSC activation at the telogen-to-anagen transition. By using both an inducible conditional gene targeting strategy and a pharmacological inhibition method to ablate or inhibit mTOR signaling in adult skin epithelium before anagen initiation, we demonstrate that HFs that cannot respond to mTOR signaling display significantly delayed HFSC activation and extended telogen. Unexpectedly, BMP signaling activity is dramatically prolonged in mTOR signaling-deficient HFs. Through both gain- and loss-of-function studies in vitro, we show that mTORC1 signaling negatively affects BMP signaling, which serves as a main mechanism whereby mTORC1 signaling facilitates HFSC activation. Indeed, in vivo suppression of BMP by its antagonist Noggin rescues the HFSC activation defect in mTORC1-null skin. Our findings reveal a critical role for mTOR signaling in regulating stem cell activation through counterbalancing BMP-mediated repression during hair regeneration.


Journal of Clinical Investigation | 2017

Preexisting endothelial cells mediate cardiac neovascularization after injury

Lingjuan He; Xiuzhen Huang; Onur Kanisicak; Yi Li; Yue Wang; Yan Li; Wenjuan Pu; Qiaozhen Liu; Hui Zhang; Xueying Tian; Huan Zhao; Xiuxiu Liu; Shaohua Zhang; Yu Nie; Shengshou Hu; Xiang Miao; Qing-Dong Wang; Fengchao Wang; Ting Chen; Qingbo Xu; Kathy O. Lui; Jeffery D. Molkentin; Bin Zhou

The mechanisms that promote the generation of new coronary vasculature during cardiac homeostasis and after injury remain a fundamental and clinically important area of study in the cardiovascular field. Recently, it was reported that mesenchymal-to-endothelial transition (MEndoT) contributes to substantial numbers of coronary endothelial cells after myocardial infarction. Therefore, the MEndoT has been proposed as a paradigm mediating neovascularization and is considered a promising therapeutic target in cardiac regeneration. Here, we show that preexisting endothelial cells mainly beget new coronary vessels in the adult mouse heart, with essentially no contribution from other cell sources through cell-lineage transdifferentiation. Genetic-lineage tracing revealed that cardiac fibroblasts expand substantially after injury, but do not contribute to the formation of new coronary blood vessels, indicating no contribution of MEndoT to neovascularization. Moreover, genetic-lineage tracing with a pulse-chase labeling strategy also showed that essentially all new coronary vessels in the injured heart are derived from preexisting endothelial cells, but not from other cell lineages. These data indicate that therapeutic strategies for inducing neovascularization should not be based on targeting presumptive lineage transdifferentiation such as MEndoT. Instead, preexisting endothelial cells appear more likely to be the therapeutic target for promoting neovascularization and driving heart regeneration after injury.


Nature Medicine | 2017

Enhancing the precision of genetic lineage tracing using dual recombinases

Lingjuan He; Yan Li; Yi Li; Wenjuan Pu; Xiuzhen Huang; Xueying Tian; Yue Wang; Hui Zhang; Qiaozhen Liu; Libo Zhang; Huan Zhao; Juan Tang; Hongbin Ji; Dongqing Cai; Zhibo Han; Zhongchao Han; Yu Nie; Shengshou Hu; Qing-Dong Wang; Ruilin Sun; Jian Fei; Fengchao Wang; Ting Chen; Yan Yan; Hefeng Huang; William T. Pu; Bin Zhou

The Cre–loxP recombination system is the most widely used technology for in vivo tracing of stem or progenitor cell lineages. The precision of this genetic system largely depends on the specificity of Cre recombinase expression in targeted stem or progenitor cells. However, Cre expression in nontargeted cell types can complicate the interpretation of lineage-tracing studies and has caused controversy in many previous studies. Here we describe a new genetic lineage tracing system that incorporates the Dre–rox recombination system to enhance the precision of conventional Cre–loxP-mediated lineage tracing. The Dre–rox system permits rigorous control of Cre–loxP recombination in lineage tracing, effectively circumventing potential uncertainty of the cell-type specificity of Cre expression. Using this new system we investigated two topics of recent debates—the contribution of c-Kit+ cardiac stem cells to cardiomyocytes in the heart and the contribution of Sox9+ hepatic progenitor cells to hepatocytes in the liver. By overcoming the technical hurdle of nonspecific Cre–loxP-mediated recombination, this new technology provides more precise analysis of cell lineage and fate decisions and facilitates the in vivo study of stem and progenitor cell plasticity in disease and regeneration.


eLife | 2015

Embryonic attenuated Wnt/β-catenin signaling defines niche location and long-term stem cell fate in hair follicle

Zijian Xu; Kaiju Jiang; Zhou Yu; Huagnwei Huang; Fengchao Wang; Bin Zhou; Ting Chen

Long-term adult stem cells sustain tissue regeneration throughout the lifetime of an organism. They were hypothesized to originate from embryonic progenitor cells that acquire long-term self-renewal ability and multipotency at the end of organogenesis. The process through which this is achieved often remains unclear. Here, we discovered that long-term hair follicle stem cells arise from embryonic progenitor cells occupying a niche location that is defined by attenuated Wnt/β-catenin signaling. Hair follicle initiation is marked by placode formation, which depends on the activation of Wnt/β-catenin signaling. Soon afterwards, a region with attenuated Wnt/β-catenin signaling emerges in the upper follicle. Embryonic progenitor cells residing in this region gain expression of adult stem cell markers and become definitive long-term hair follicle stem cells at the end of organogenesis. Attenuation of Wnt/β-catenin signaling is a prerequisite for hair follicle stem cell specification because it suppresses Sox9, which is required for stem cell formation. DOI: http://dx.doi.org/10.7554/eLife.10567.001


Cell Research | 2017

Fibroblasts in an endocardial fibroelastosis disease model mainly originate from mesenchymal derivatives of epicardium

Hui Zhang; Xiuzhen Huang; Kuo Liu; Juan Tang; Lingjuan He; Wenjuan Pu; Qiaozhen Liu; Yan Li; Xueying Tian; Yue Wang; Libo Zhang; Ying Yu; Hongyan Wang; Ronggui Hu; Fengchao Wang; Ting Chen; Qing-Dong Wang; Zengyong Qiao; Li Zhang; Kathy O. Lui; Bin Zhou

Endocardial fibroelastosis (EFE) refers to the thickening of the ventricular endocardium as a result of de novo deposition of subendocardial fibrous tissue layers during neonatal heart development. The origin of EFE fibroblasts is proposed to be postnatal endocardial cells that undergo an aberrant endothelial-to-mesenchymal transition (EndMT). Genetic lineage tracing of endocardial cells with the inducible endocardial Cre line Npr3-CreER and the endothelial cell tracing line Cdh5-CreER on an EFE-like model did not reveal any contribution of neonatal endocardial cells to fibroblasts in the EFE-like tissues. Instead, lineage tracing of embryonic epicardium by Wt1-CreER suggested that epicardium-derived mesenchymal cells (MCs) served as the major source of EFE fibroblasts. By labeling MCs using Sox9-CreER, we confirmed that MCs of the embryonic heart expand and contribute to the majority of neonatal EFE fibroblasts. During this pathological process, TGFβ signaling, the key mediator of fibroblasts activation, was highly upregulated in the EFE-like tissues. Targeting TGFβ signaling by administration of its antagonist bone morphogenetic protein 7 effectively reduced fibroblast accumulation and tissue fibrosis in the EFE-like model. Our study provides genetic evidence that excessive fibroblasts in the EFE-like tissues mainly originate from the epicardium-derived MCs through epicardial to mesenchymal transition (EpiMT). These EpiMT-derived fibroblasts within the EFE-like tissues could serve as a potential therapeutic target.

Collaboration


Dive into the Ting Chen's collaboration.

Top Co-Authors

Avatar

Zijian Xu

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Elaine Fuchs

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Bin Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hui Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lingjuan He

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qiaozhen Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wenjuan Pu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiuzhen Huang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xueying Tian

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yan Li

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge