Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ting Gao is active.

Publication


Featured researches published by Ting Gao.


American Journal of Physiology-renal Physiology | 2011

Monocyte/macrophage chemokine receptor CCR2 mediates diabetic renal injury

Alaa S. Awad; Gilbert R. Kinsey; Konstantine Khutsishvili; Ting Gao; W. Kline Bolton; Mark D. Okusa

Monocyte/macrophage recruitment correlates strongly with the progression of renal impairment in diabetic nephropathy (DN). C-C chemokine receptor (CCR)2 regulates monocyte/macrophage migration into injured tissues. However, the direct role of CCR2-mediated monocyte/macrophage recruitment in diabetic kidney disease remains unclear. We report that pharmacological blockade or genetic deficiency of CCR2 confers kidney protection in Ins2(Akita) and streptozotocin (STZ)-induced diabetic kidney disease. Blocking CCR2 using the selective CCR2 antagonist RS504393 for 12 wk in Ins2(Akita) mice significantly attenuated albuminuria, the increase in blood urea nitrogen and plasma creatinine, histological changes, and glomerular macrophage recruitment compared with vehicle. Furthermore, mice lacking CCR2 (CCR2(-/-)) mimicked CCR2 blockade by reducing albuminuria and displaying less fibronectin mRNA expression and inflammatory cytokine production compared with CCR2(+/+) mice, despite comparable blood glucose levels. Bone marrow-derived monocytes from CCR2(+/+) or CCR2(-/-) mice adoptively transferred into CCR2(-/-) mice reversed the renal tissue-protective effect in diabetic CCR2(-/-) mice as evaluated by increased urinary albumin excretion and kidney macrophage recruitment, indicating that CCR2 is not required for monocyte migration from the circulation into diabetic kidneys. These findings provide evidence that CCR2 is necessary for monocyte/macrophage-induced diabetic renal injury and suggest that blocking CCR2 could be a novel therapeutic approach in the treatment of DN.


Diabetes | 2011

Arginase-2 Mediates Diabetic Renal Injury

Sidney M. Morris; Ting Gao; Timothy K. Cooper; Diane Kepka-Lenhart; Alaa S. Awad

OBJECTIVE To determine 1) whether renal arginase activity or expression is increased in diabetes and 2) whether arginase plays a role in development of diabetic nephropathy (DN). RESEARCH DESIGN AND METHODS The impact of arginase activity and expression on renal damage was evaluated in spontaneously diabetic Ins2Akita mice and in streptozotocin (STZ)-induced diabetic Dilute Brown Agouti (DBA) and arginase-2–deficient mice (Arg2−/−). RESULTS Pharmacological blockade or genetic deficiency of arginase-2 conferred kidney protection in Ins2Akita mice or STZ-induced diabetic renal injury. Blocking arginases using S-(2-boronoethyl)-l-cysteine for 9 weeks in Ins2Akita mice or 6 weeks in STZ-induced diabetic DBA mice significantly attenuated albuminuria, the increase in blood urea nitrogen, histopathological changes, and kidney macrophage recruitment compared with vehicle-treated Ins2Akita mice. Furthermore, kidney arginase-2 expression increased in Ins2Akita mice compared with control. In contrast, arginase-1 expression was undetectable in kidneys under normal or diabetes conditions. Arg2−/− mice mimicked arginase blockade by reducing albuminuria after 6 and 18 weeks of STZ-induced diabetes. In wild-type mice, kidney arginase activity increased significantly after 6 and 18 weeks of STZ-induced diabetes but remained very low in STZ-diabetic Arg2−/− mice. The increase in kidney arginase activity was associated with a reduction in renal medullary blood flow in wild-type mice after 6 weeks of STZ-induced diabetes, an effect significantly attenuated in diabetic Arg2−/− mice. CONCLUSIONS These findings indicate that arginase-2 plays a major role in induction of diabetic renal injury and that blocking arginase-2 activity or expression could be a novel therapeutic approach for treatment of DN.


American Journal of Physiology-renal Physiology | 2013

Macrophages directly mediate diabetic renal injury

Hanning You; Ting Gao; Timothy K. Cooper; W. Brian Reeves; Alaa S. Awad

Monocyte/macrophage recruitment correlates strongly with the progression of renal impairment in diabetic nephropathy (DN), yet their direct role is not clear. We hypothesized that macrophages contribute to direct podocyte injury and/or an abnormal podocyte niche leading to DN. Experiments were conducted in CD11b-DTR mice treated with diphtheria toxin (DT) to deplete macrophages after streptozotocin-induced diabetes. Additional experiments were conducted in bone marrow chimeric (CD11b-DTR→ C57BL6/J) mice. Diabetes was associated with an increase in the M1-to-M2 ratio by 6 wk after the induction of diabetes. Macrophage depletion in diabetic CD11b-DTR mice significantly attenuated albuminuria, kidney macrophage recruitment, and glomerular histological changes and preserved kidney nephrin and podocin expression compared with diabetic CD11b-DTR mice treated with mutant DT. These data were confirmed in chimeric mice indicating a direct role of bone marrow-derived macrophages in DN. In vitro, podocytes grown in high-glucose media significantly increased macrophage migration compared with podocytes grown in normal glucose media. In addition, classically activated M1 macrophages, but not M2 macrophages, induced podocyte permeability. These findings provide evidence showing that macrophages directly contribute to kidney injury in DN, perhaps by altering podocyte integrity through the proinflammatory M1 subset of macrophages. Attenuating the deleterious effects of macrophages on podocytes could provide a new therapeutic approach to the treatment of DN.


Kidney International | 2015

Macrophage-derived tumor necrosis factor-α mediates diabetic renal injury.

Alaa S. Awad; Hanning You; Ting Gao; Timothy K. Cooper; Sergei A. Nedospasov; Jean Vacher; Patrick Wilkinson; Francis X. Farrell; W. Brian Reeves

Monocyte/macrophage recruitment correlates strongly with the progression of diabetic nephropathy. Tumor necrosis factor-alpha (TNF-α) is produced by monocytes/macrophages but the direct role of TNF-α and/or macrophage-derived TNF-α in the progression of diabetic nephropathy remains unclear. Here we tested whether inhibition of TNF-α confers kidney protection in diabetic nephropathy via a macrophage-derived TNF-α dependent pathway. Compared to vehicle-treated mice, blockade of TNF-α with a murine anti-TNF-α antibody conferred kidney protection in Ins2Akita mice as indicated by reductions in albuminuria, plasma creatinine, histopathologic changes, kidney macrophage recruitment and plasma inflammatory cytokine levels at 18 weeks of age. To assess the direct role of macrophage-derived TNF-α in diabetic nephropathy, we generated macrophage specific TNF-α deficient mice (CD11bCre/TNF-αFlox/Flox). Conditional ablation of TNF-α in macrophages significantly reduced albuminuria, the increase in plasma creatinine and BUN, histopathologic changes and kidney macrophage recruitment compared to diabetic TNF-αFlox/Flox control mice after 12 weeks of streptozotocin-induced diabetes. Thus, production of TNF-α by macrophages plays a major role in diabetic renal injury. Hence, blocking TNF-α could be a novel therapeutic approach for treatment of diabetic nephropathy.


American Journal of Physiology-renal Physiology | 2014

Diabetic nephropathy is resistant to oral l-arginine or l-citrulline supplementation

Hanning You; Ting Gao; Timothy K. Cooper; Sidney M. Morris; Alaa S. Awad

Our recent publication showed that pharmacological blockade of arginases confers kidney protection in diabetic nephropathy via a nitric oxide (NO) synthase (NOS)3-dependent mechanism. Arginase competes with endothelial NOS (eNOS) for the common substrate L-arginine. Lack of L-arginine results in reduced NO production and eNOS uncoupling, which lead to endothelial dysfunction. Therefore, we hypothesized that L-arginine or L-citrulline supplementation would ameliorate diabetic nephropathy. DBA mice injected with multiple low doses of vehicle or streptozotocin (50 mg/kg ip for 5 days) were provided drinking water with or without L-arginine (1.5%, 6.05 g·kg(-1)·day(-1)) or L-citrulline (1.66%, 5.73 g·kg(-1)·day(-1)) for 9 wk. Nonsupplemented diabetic mice showed significant increases in albuminuria, blood urea nitrogen, glomerular histopathological changes, kidney macrophage recruitment, kidney TNF-α and fibronectin mRNA expression, kidney arginase activity, kidney arginase-2 protein expression, and urinary oxidative stress along with a significant reduction of nephrin and eNOS protein expression and kidney nitrite + nitrate compared with normal mice after 9 wk of diabetes. Surprisingly, L-arginine or L-citrulline supplementation in diabetic mice did not affect any of these parameters despite greatly increasing kidney and plasma arginine levels. These findings demonstrate that chronic L-arginine or L-citrulline supplementation does not prevent or reduce renal injury in a model of type 1 diabetes.


American Journal of Physiology-renal Physiology | 2013

Protective role of small pigment epithelium-derived factor (PEDF) peptide in diabetic renal injury

Alaa S. Awad; Ting Gao; Anzor Gvritishvili; Hanning You; Yanling Liu; Timothy K. Cooper; W. Brian Reeves; Joyce Tombran-Tink

Pigment epithelium-derived factor (PEDF) is a multifunctional protein with antiangiogenic, antioxidative, and anti-inflammatory properties. PEDF is involved in the pathogenesis of diabetic retinopathy, but its direct role in the kidneys remains unclear. We hypothesize that a PEDF fragment (P78-PEDF) confers kidney protection in diabetic nephropathy (DN). The localization of the full-length PEDF protein were determined in DBA mice following multiple low doses of streptozotocin. Using immunohistochemistry, PEDF was localized in the kidney vasculature, interstitial space, glomeruli, tubules, and renal medulla. Kidney PEDF protein and mRNA expression were significantly reduced in diabetic mice. Continuous infusion of P78-PEDF for 6 wk resulted in protection from diabetic neuropathy as indicated by reduced albuminuria and blood urea nitrogen, increased nephrin expression, decreased kidney macrophage recruitment and inflammatory cytokines, and reduced histological changes compared with vehicle-treated diabetic mice. In vitro, P78-PEDF blocked the increase in podocyte permeability to albumin and disruption of the actin cytoskeleton induced by puromycin aminonucleoside treatment. These findings highlight the importance of P78-PEDF peptide as a potential therapeutic modality in early phase diabetic renal injury.


American Journal of Physiology-renal Physiology | 2015

Arginase inhibition: a new treatment for preventing progression of established diabetic nephropathy

Hanning You; Ting Gao; Timothy K. Cooper; Sidney M. Morris; Alaa S. Awad

Our previous publication showed that inhibition of arginase prevents the development of diabetic nephropathy (DN). However, identification of targets that retard the progression of established DN-which is more clinically relevant-is lacking. Therefore, we tested the hypothesis that arginase inhibition would prevent the progression of established DN. Effects of arginase inhibition were compared with treatment with the angiotensin-converting enzyme inhibitor captopril, a current standard of care in DN. Experiments were conducted in Ins2(Akita) mice treated with the arginase inhibitor S-(2-boronoethyl)-l-cysteine (BEC) or captopril starting at 6 wk of age for 12 wk (early treatment) or starting at 12 wk of age for 6 wk (late treatment). Early and late treatment with BEC resulted in protection from DN as indicated by reduced albuminuria, histological changes, kidney macrophage infiltration, urinary thiobarbituric acid-reactive substances, and restored nephrin expression, kidney nitrate/nitrite, kidney endothelial nitric oxide synthase phosphorylation, and renal medullary blood flow compared with vehicle-treated Ins2(Akita) mice at 18 wk of age. Interestingly, early treatment with captopril reduced albuminuria, histological changes, and kidney macrophage infiltration without affecting the other parameters, but late treatment with captopril was ineffective. These findings highlight the importance of arginase inhibition as a new potential therapeutic intervention in both early and late stages of diabetic renal injury.


PLOS ONE | 2015

Delayed Treatment with a Small Pigment Epithelium Derived Factor (PEDF) Peptide Prevents the Progression of Diabetic Renal Injury

Alaa S. Awad; Hanning You; Ting Gao; Anzor Gvritishvili; Timothy K. Cooper; Joyce Tombran-Tink

Our recent publication showed that a small bioactive pigment epithelium derived factor (PEDF) peptide (P78-PEDF) prevents the development of diabetic nephropathy (DN). However, its effects on the progression of established DN were not clear. Therefore, the purpose of this study was to determine the effect of P78-PEDF in the progression of DN and to compare the effects of P78-PEDF and an ACE inhibitor (ACEi), a standard of care in DN. Experiments were conducted in Ins2Akita mice treated with P78-PEDF or captopril starting at 6 wks of age for 12 wks (early treatment) or starting at 12 wks of age for 6 wks (late treatment). We first established the optimal dose of the P78-PEDF peptide to ameliorate DN in Ins2Akita mouse for a 6 wk study period and found that the peptide was effective at 0.1- 0.5 µg/g/day. We next showed that early or late treatment with P78-PEDF resulted in protection from DN as indicated by reduced albuminuria, kidney macrophage recruitment, histological changes, inflammatory cytokines and fibrotic markers (kidney TNF-α, fibronectin, VEGFA and EGFR), and restored nephrin expression compared with vehicle-treated Ins2Akita mice. Interestingly, only early but not late treatment with captopril was as effective as P78-PEDF in reducing most DN complications, despite its lack of effect on nephrin, VEGFA and EGFR expression. These findings highlight the importance of P78-PEDF peptide as a potential therapeutic modality in both the development and progression of diabetic renal injury.


Kidney International | 2017

Podocyte-specific chemokine (C-C motif) receptor 2 overexpression mediates diabetic renal injury in mice

Hanning You; Ting Gao; Wesley M. Raup-Konsavage; Timothy K. Cooper; Sarah K. Bronson; W. Brian Reeves; Alaa S. Awad

Inflammation is a central pathophysiologic mechanism that contributes to diabetes mellitus and diabetic nephropathy. Recently, we showed that macrophages directly contribute to diabetic renal injury and that pharmacological blockade or genetic deficiency of chemokine (C-C motif) receptor 2 (CCR2) confers kidney protection in diabetic nephropathy. However, the direct role of CCR2 in kidney-derived cells such as podocytes in diabetic nephropathy remains unclear. To study this, we developed a transgenic mouse model expressing CCR2 specifically in podocytes (Tg[NPHS2-Ccr2]) on a nephropathy-prone (DBA/2J) and CCR2-deficient (Ccr2-/-) background with heterozygous Ccr2+/- littermate controls. Diabetes was induced by streptozotocin. As expected, absence of CCR2 conferred kidney protection after nine weeks of diabetes. In contrast, transgenic CCR2 overexpression in the podocytes of Ccr2-/- mice resulted in significantly increased albuminuria, blood urea nitrogen, histopathologic changes, kidney fibronectin and type 1 collagen expression, podocyte loss, and glomerular apoptosis after nine weeks of streptozotocin-induced diabetes. Interestingly, there was no concurrent increase in kidney macrophage recruitment or inflammatory cytokine levels in the mice. These findings support a direct role for CCR2 expression in podocytes to mediate diabetic renal injury, independent of monocyte/macrophage recruitment. Thus, targeting the CCR2 signaling cascade in podocytes could be a novel therapeutic approach for treatment of diabetic nephropathy.


American Journal of Physiology-renal Physiology | 2017

Arginase-2 Mediates Renal Ischemia/Reperfusion Injury

Wesley M. Raup-Konsavage; Ting Gao; Timothy K. Cooper; Sidney M. Morris; W. Brian Reeves; Alaa S. Awad

Novel therapeutic interventions for preventing or attenuating kidney injury following ischemia-reperfusion injury (IRI) remain a focus of significant interest. Currently, there are no definitive therapeutic or preventive approaches available for ischemic acute kidney injury (AKI). Our objective is to determine 1) whether renal arginase activity or expression is increased in renal IRI, and 2) whether arginase plays a role in development of renal IRI. The impact of arginase activity and expression on renal damage was evaluated in male C57BL/6J (wild type) and arginase-2 (ARG2)-deficient (Arg2-/- ) mice subjected to bilateral renal ischemia for 28 min, followed by reperfusion for 24 h. ARG2 expression and arginase activity significantly increased following renal IRI, paralleling the increase in kidney injury. Pharmacological blockade or genetic deficiency of Arg2 conferred kidney protection in renal IRI. Arg2-/- mice had significantly attenuated kidney injury and lower plasma creatinine and blood urea nitrogen levels after renal IRI. Blocking arginases using S-(2-boronoethyl)-l-cysteine (BEC) 18 h before ischemia mimicked arginase deficiency by reducing kidney injury, histopathological changes and kidney injury marker-1 expression, renal apoptosis, kidney inflammatory cell recruitment and inflammatory cytokines, and kidney oxidative stress; increasing kidney nitric oxide (NO) production and endothelial NO synthase (eNOS) phosphorylation, kidney peroxisome proliferator-activated receptor-γ coactivator-1α expression, and mitochondrial ATP; and preserving kidney mitochondrial ultrastructure compared with vehicle-treated IRI mice. Importantly, BEC-treated eNOS-knockout mice failed to reduce blood urea nitrogen and creatinine following renal IRI. These findings indicate that ARG2 plays a major role in renal IRI, via an eNOS-dependent mechanism, and that blocking ARG2 activity or expression could be a novel therapeutic approach for prevention of AKI.

Collaboration


Dive into the Ting Gao's collaboration.

Top Co-Authors

Avatar

Alaa S. Awad

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Timothy K. Cooper

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Hanning You

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. Brian Reeves

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Anzor Gvritishvili

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Joyce Tombran-Tink

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean Vacher

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge