Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ting-Wen Chen is active.

Publication


Featured researches published by Ting-Wen Chen.


BMC Genomics | 2012

FastAnnotator- an efficient transcript annotation web tool

Ting-Wen Chen; Ruei-Chi Richie Gan; Timothy H. Wu; Po-Jung Huang; Cheng-Yang Lee; Yi-Ywan M. Chen; Che-Chun Chen; Petrus Tang

BackgroundRecent developments in high-throughput sequencing (HTS) technologies have made it feasible to sequence the complete transcriptomes of non-model organisms or metatranscriptomes from environmental samples. The challenge after generating hundreds of millions of sequences is to annotate these transcripts and classify the transcripts based on their putative functions. Because many biological scientists lack the knowledge to install Linux-based software packages or maintain databases used for transcript annotation, we developed an automatic annotation tool with an easy-to-use interface.MethodsTo elucidate the potential functions of gene transcripts, we integrated well-established annotation tools: Blast2GO, PRIAM and RPS BLAST in a web-based service, FastAnnotator, which can assign Gene Ontology (GO) terms, Enzyme Commission numbers (EC numbers) and functional domains to query sequences.ResultsUsing six transcriptome sequence datasets as examples, we demonstrated the ability of FastAnnotator to assign functional annotations. FastAnnotator annotated 88.1% and 81.3% of the transcripts from the well-studied organisms Caenorhabditis elegans and Streptococcus parasanguinis, respectively. Furthermore, FastAnnotator annotated 62.9%, 20.4%, 53.1% and 42.0% of the sequences from the transcriptomes of sweet potato, clam, amoeba, and Trichomonas vaginalis, respectively, which lack reference genomes. We demonstrated that FastAnnotator can complete the annotation process in a reasonable amount of time and is suitable for the annotation of transcriptomes from model organisms or organisms for which annotated reference genomes are not avaiable.ConclusionsThe sequencing process no longer represents the bottleneck in the study of genomics, and automatic annotation tools have become invaluable as the annotation procedure has become the limiting step. We present FastAnnotator, which was an automated annotation web tool designed to efficiently annotate sequences with their gene functions, enzyme functions or domains. FastAnnotator is useful in transcriptome studies and especially for those focusing on non-model organisms or metatranscriptomes. FastAnnotator does not require local installation and is freely available at http://fastannotator.cgu.edu.tw.


BMC Genomics | 2014

ChIPseek, a web-based analysis tool for ChIP data

Ting-Wen Chen; Hsin-Pai Li; Chi-Ching Lee; Ruei-Chi Gan; Po-Jung Huang; Timothy H. Wu; Cheng-Yang Lee; Yi-Feng Chang; Petrus Tang

BackgroundChromatin is a dynamic but highly regulated structure. DNA-binding proteins such as transcription factors, epigenetic and chromatin modifiers are responsible for regulating specific gene expression pattern and may result in different phenotypes. To reveal the identity of the proteins associated with the specific region on DNA, chromatin immunoprecipitation (ChIP) is the most widely used technique. ChIP assay followed by next generation sequencing (ChIP-seq) or microarray (ChIP-chip) is often used to study patterns of protein-binding profiles in different cell types and in cancer samples on a genome-wide scale. However, only a limited number of bioinformatics tools are available for ChIP datasets analysis.ResultsWe present ChIPseek, a web-based tool for ChIP data analysis providing summary statistics in graphs and offering several commonly demanded analyses. ChIPseek can provide statistical summary of the dataset including histogram of peak length distribution, histogram of distances to the nearest transcription start site (TSS), and pie chart (or bar chart) of genomic locations for users to have a comprehensive view on the dataset for further analysis. For examining the potential functions of peaks, ChIPseek provides peak annotation, visualization of peak genomic location, motif identification, sequence extraction, and comparison between datasets. Beyond that, ChIPseek also offers users the flexibility to filter peaks and re-analyze the filtered subset of peaks. ChIPseek supports 20 different genome assemblies for 12 model organisms including human, mouse, rat, worm, fly, frog, zebrafish, chicken, yeast, fission yeast, Arabidopsis, and rice. We use demo datasets to demonstrate the usage and intuitive user interface of ChIPseek.ConclusionsChIPseek provides a user-friendly interface for biologists to analyze large-scale ChIP data without requiring any programing skills. All the results and figures produced by ChIPseek can be downloaded for further analysis. The analysis tools built into ChIPseek, especially the ones for selecting and examine a subset of peaks from ChIP data, provides invaluable helps for exploring the high through-put data from either ChIP-seq or ChIP-chip. ChIPseek is freely available at http://chipseek.cgu.edu.tw.


Oncotarget | 2016

MicroRNA-223 and microRNA-92a in stool and plasma samples act as complementary biomarkers to increase colorectal cancer detection

Pi-Yueh Chang; Chia-Chun Chen; Yu-Sun Chang; Wen-Sy Tsai; Jeng-Fu You; Geng-Ping Lin; Ting-Wen Chen; Jinn-Shiun Chen; Err-Cheng Chan

Aberrant levels of circulating miRNAs are potential biomarkers for the early detection of colorectal cancer (CRC). However, no previous systematic study has examined miRNAs in various specimen types from the same patient to evaluate their clinical utility. In this study, we compiled information from ∼450 articles published before 2012, and selected the 46 most frequently reported CRC-related miRNAs as candidates. We then established a 46-miRNA multiplex RT-qPCR method, and efficiently examined two clinically accessible samples: stool from fecal occult blood test and EDTA plasma. A total of 62 tissue, 447 stool, and 398 plasma samples were collected from CRC patients and healthy controls. Good correlations of detectable miRNAs were noticed in paired tumor tissues, stool, and plasma samples of 62 CRC patients. Using these 62 CRC patients and 62 matched healthy controls as the training set, 5 and 11 differentially expressed miRNAs achieved the area under the ROC curve (AUC) greater than 0.7 in stool and plasma samples, respectively. The selected miRNAs was subsequently validated using the remaining enrolled samples as the test cohort; 4 miRNAs in stool and 6 miRNAs in plasma were maintained discriminating powers for CRC patients. After examining the complementary effect, combined analysis of miR-223 and miR-92a, which were commonly present in stool and plasma samples, yielded the highest sensitivity of 96.8% and the specificity of 75% for CRC (AUC = 0.907). These results allowed us to establish a two-miRNA biosignature in two types of CRC clinical specimens with a high sensitivity for CRC detection.


BMC Genomics | 2013

Co-modulated behavior and effects of differentially expressed miRNA in colorectal cancer

Wei-Shone Chen; Ting-Wen Chen; Tzu-Hsien Yang; Ling-Yueh Hu; Hung-Wei Pan; Chung-Man Leung; Sung-Chou Li; Meng-Ru Ho; Chih-Wen Shu; Pei-Feng Liu; Shou-Yu Yu; Ya-Ting Tu; Wen-chang Lin; Tony T. Wu; Kuo-Wang Tsai

BackgroundMicroRNAs (miRNAs) are short noncoding RNAs (approximately 22 nucleotides in length) that play important roles in colorectal cancer (CRC) progression through silencing gene expression. Numerous dysregulated miRNAs simultaneously participate in the process of colon cancer development. However, the detailed mechanisms and biological functions of co-expressed miRNA in colorectal carcinogenesis have yet to be fully elucidated.ResultsThe objective of this study was to identify the dysfunctional miRNAs and their target mRNAs using a wet-lab experimental and dry-lab bioinformatics approach. The differentially expressed miRNA candidates were identified from 2 miRNA profiles, and were confirmed in CRC clinical samples using reported target genes of dysfunctional miRNAs to perform functional pathway enrichment analysis. Potential target gene candidates were predicted by an in silico search, and their expression levels between normal and colorectal tumor tissues were further analyzed using real-time polymerase chain reaction (RT-PCR).We identified 5 miRNAs (miR-18a, miR-31, miR-96, miR-182, and miR-224) and 10 miRNAs (miR-1, miR-9, miR-10b, miR-133a, miR-143, miR-137, miR-147b, miR-196a/b, and miR-342) that were significantly upregulated and downregulated in colon tumors, respectively. Bioinformatics analysis showed that the known targets of these dysregulated miRNAs simultaneously participated in epithelial-to-mesenchymal transition (EMT), cell growth, cell adhesion, and cell cycles. In addition, we identified that several pivotal target gene candidates may be comodulated by dysfunctional miRNAs during colon cancer progression. Finally, 7 candidates were proven to be differentially expressed, and had an anti-correlationship with dysregulated miRNA in 48 CRC samples.ConclusionFifteen dysfunctional miRNAs were engaged in metastasis-associated pathways through comodulating 7 target genes, which were identified by using a multi-step approach. The roles of these candidate genes are worth further exploration in the progression of colon cancer, and could potentially be targets in future therapy.


Oncology Reports | 2014

MicroRNA expression profiles in human breast cancer cells after multifraction and single-dose radiation treatment

Chung-Man Leung; Ting-Wen Chen; Sung-Chou Li; Meng-Ru Ho; Ling-Yueh Hu; Wen‑Shan Liu; Tony T. Wu; Ping-Chi Hsu; Hong-Tai Chang; Kuo-Wang Tsai

MicroRNAs (miRNAs) are small non-coding RNAs that contribute to modulating signaling pathways after radiation exposure and have emerged as a potential therapeutic target or biomarker in the radiation response of cancer. Exposing breast cancer cells to single-dose (SD) or multifractionated (MF) radiation may affect the cells differently. However, the roles of miRNAs in breast cancer cells after the response to SD or MF is not thoroughly understood. Therefore, the purpose of the present study was to comprehensively investigate the response of miRNAs in MDA-MB-361 by using various radiation exposing protocols. Our results revealed that only a small fraction of miRNAs exhibiting differential expressions (>1.5‑fold) was identified after MDA-MB-361 cells were exposed to SD (10 Gy) or MF radiation (2 Gy x 5 MF). In addition, we observed that several miRNAs in the MDA-MB-361 cells frequently exhibited differential responses to various types of radiation treatment. Among these miRNAs, the expression levels of an oncogenic miR-17-92 cluster increased following SD radiation treatment. Conversely, miR-19a-3p, miR-20a-5p, and miR-19b-3p expressions were inhibited by >1.5-fold in the following MF treatment. Further analysis of the miR-17-92 cluster expression levels revealed that miR-17, miR-18a, miR-19a/b and miR-20a were significantly overexpressed and miR-92a was downregulated in breast cancer. Functional annotation demonstrated that target genes of the miR-17-92 cluster were predominantly involved in the regulation of radiation-associated signal pathways such as mitogen-activated protein kinase (MAPK), ErbB, p53, Wnt, transforming growth factor-β (TGF-β), mTOR signaling pathways and cell cycles with an FDR <0.05. Overall, the results of the present study revealed distinct differences in the response of miRNAs to SD and MF radiation exposure, and these radiation-associated miRNAs may contribute to radiosensitivity and can be used as biomarkers for radiotherapy.


Oncology Reports | 2015

Emerging role of microRNAs in modulating endothelin-1 expression in gastric cancer

Kuo-Wang Tsai; Ling-Yueh Hu; Ting-Wen Chen; Sung-Chou Li; Meng‑Ru Ho; Shou-Yu Yu; Ya-Ting Tu; Wei-Shone Chen; Hing-Chung Lam

Endothelin-1 (ET-1) is a small 21-amino acid peptide that is known to exert diverse biological effects on a wide variety of tissues and cell types through its own receptors. The ET-1-ETRA axis is frequently dysfunctional in numerous types of carcinomas, and contributes to the promotion of cell growth and migration. microRNAs (miRNAs) are small non-coding RNAs that play a critical role in carcinogenesis through mRNA degradation or the translational inhibition of cancer-associated protein-coding genes. However, the role of ET-1 and the relationship between ET-1 and miRNAs in gastric cancer remain unknown. Results of the analysis of the database of The Cancer Genome Atlas (TCGA) revealed that ET-1 is significantly overexpressed in gastric cancer cells when compared with its expression in adjacent normal cells. Exogenous ET-1 significantly enhanced gastric cancer cell proliferation, implying that ET-1 plays an oncogenic role in gastric cancer carcinogenesis. Using a luciferase reporter assay we showed that 18 miRNA candidates had a significant silencing effect on ET-1 expression by up to 20% in HEK293T cells. Among them, 5 miRNAs (miR-1, miR-101, miR-125A, miR-144 and let-7c) were shown to be involved in ET-1 silencing through post-transcriptional modulation in gastric cancer. Our data also revealed that DNA hypermethylation contributes to the silenced miR-1 expression in gastric cancer cells. The ectopic expression of miR-1 significantly inhibited AGS cell proliferation by suppressing ET-1 expression. Overall, our study revealed that ET-1 overexpression may be due to DNA hypermethylation resulting in the silencing of miR-1 expression in gastric cancer cells. In addition, we identified several miRNAs as potential modulators for ET-1 in gastric cancer, which may be used as targets for gastric cancer therapy.


Scientific Reports | 2016

Arm Selection Preference of MicroRNA-193a Varies in Breast Cancer

Kuo-Wang Tsai; Chung-Man Leung; Yi-Hao Lo; Ting-Wen Chen; Wen-Ching Chan; Shou-Yu Yu; Ya-Ting Tu; Hing-Chung Lam; Sung-Chou Li; Luo-Ping Ger; Wen-Shan Liu; Hong-Tai Chang

MicroRNAs (miRNAs) are short noncoding RNAs derived from the 3′ and 5′ ends of the same precursor. However, the biological function and mechanism of miRNA arm expression preference remain unclear in breast cancer. We found significant decreases in the expression levels of miR-193a-5p but no significant differences in those of miR-193a-3p in breast cancer. MiR-193a-3p suppressed breast cancer cell growth and migration and invasion abilities, whereas miR-193a-5p suppressed cell growth but did not influence cell motility. Furthermore, NLN and CCND1, PLAU, and SEPN1 were directly targeted by miR-193a-5p and miR-193a-3p, respectively, in breast cancer cells. The endogenous levels of miR-193a-5p and miR-193a-3p were significantly increased by transfecting breast cancer cells with the 3′UTR of their direct targets. Comprehensive analysis of The Cancer Genome Atlas database revealed significant differences in the arm expression preferences of several miRNAs between breast cancer and adjacent normal tissues. Our results collectively indicate that the arm expression preference phenomenon may be attributable to the target gene amount during breast cancer progression. The miRNA arm expression preference may be a means of modulating miRNA function, further complicating the mRNA regulatory network. Our findings provide a new insight into miRNA regulation and an application for breast cancer therapy.


Oncology Reports | 2014

Comprehensive microRNA profiling of prostate cancer cells after ionizing radiation treatment

Chung-Man Leung; Sung-Chou Li; Ting-Wen Chen; Meng-Ru Ho; Ling-Yueh Hu; Wen‑Shan Liu; Tony T. Wu; Ping-Chi Hsu; Hong-Tai Chang; Kuo-Wang Tsai

MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression and have emerged as potential biomarkers in radiation response to human cancer. Only a few miRNAs have been identified in radiation response to prostate cancer and the involvement of the radiation-associated miRNA machinery in the response of prostate cancer cells to radiation is not thoroughly understood. Therefore, the purpose of the present study was to comprehensively investigate the expression levels, arm selection preference and isomiRs of radiation-response miRNAs in radiation-treated PC3 cells using a next-generation sequencing (NGS) approach. Our data revealed that the arm selection preference and 3′ modification of miRNAs may be altered in prostate cancer after radiation exposure. In addition, the proportion of AA dinucleotide modifications at the end of the read gradually increased in a time-dependent manner after PC3 radiation treatment. We also identified 6 miRNAs whose expression increased and 16 miRNAs whose expression decreased after exposure to 10 Gy of radiation. A pathway enrichment analysis revealed that the target genes of these radiation-induced miRNAs significantly co-modulated the radiation response pathway, including the mitogen-activated protein kinase (MAPK), Wnt, transforming growth factor-β (TGF-β) and ErbB signaling pathways. Furthermore, analysis of The Cancer Genome Atlas (TCGA) database revealed that the expression of these radiation-induced miRNAs was frequently dysregulated in prostate cancer. Our study identified radiation-induced miRNA candidates which may contribute to radiosensitivity and can be used as biomarkers for radiotherapy.


Nature Communications | 2017

APOBEC3A is an oral cancer prognostic biomarker in Taiwanese carriers of an APOBEC deletion polymorphism.

Ting-Wen Chen; Chi-Ching Lee; Hsuan Liu; C.-T. Wu; Curtis R. Pickering; Po-Jung Huang; Jing Wang; Ian Yi-Feng Chang; Yuan-Ming Yeh; Chih-De Chen; Hsin-Pai Li; Ji-Dung Luo; Bertrand Chin-Ming Tan; Timothy En Haw Chan; Chuen Hsueh; Lichieh Julie Chu; Yi-Ting Chen; Bing Zhang; Chia-Yu Yang; Chih-Ching Wu; Chia-Wei Hsu; Lai-Chu See; Petrus Tang; Jau-Song Yu; Wei-Chao Liao; Wei-Fan Chiang; Henry Rodriguez; Jeffrey N. Myers; Kai-Ping Chang; Yu-Sun Chang

Oral squamous cell carcinoma is a prominent cancer worldwide, particularly in Taiwan. By integrating omics analyses in 50 matched samples, we uncover in Taiwanese patients a predominant mutation signature associated with cytidine deaminase APOBEC, which correlates with the upregulation of APOBEC3A expression in the APOBEC3 gene cluster at 22q13. APOBEC3A expression is significantly higher in tumors carrying APOBEC3B-deletion allele(s). High-level APOBEC3A expression is associated with better overall survival, especially among patients carrying APOBEC3B-deletion alleles, as examined in a second cohort (nu2009=u2009188; pu2009=u20090.004). The frequency of APOBEC3B-deletion alleles is ~50% in 143 genotyped oral squamous cell carcinoma -Taiwan samples (27A3B−/−:89A3B+/−:27A3B+/+), compared to the 5.8% found in 314 OSCC-TCGA samples. We thus report a frequent APOBEC mutational profile, which relates to a APOBEC3B-deletion germline polymorphism in Taiwanese oral squamous cell carcinoma that impacts expression of APOBEC3A, and is shown to be of clinical prognostic relevance. Our finding might be recapitulated by genomic studies in other cancer types.Oral squamous cell carcinoma is a prevalent malignancy in Taiwan. Here, the authors show that OSCC in Taiwanese show a frequent deletion polymorphism in the cytidine deaminases gene cluster APOBEC3 resulting in increased expression of A3A, which is shown to be of clinical prognostic relevance.


Sleep | 2016

Whole Genome DNA Methylation Analysis of Obstructive Sleep Apnea: IL1R2, NPR2, AR, SP140 Methylation and Clinical Phenotype.

Yung-Che Chen; Ting-Wen Chen; Mao-Chang Su; Chung-Jen Chen; Kuang-Den Chen; Chia-Wei Liou; Petrus Tang; Ting-Ya Wang; Jen-Chieh Chang; Chin-Chou Wang; Hsin-Ching Lin; Chien-Hung Chin; Kuo-Tung Huang; Meng-Chih Lin; Chang-Chun Hsiao

STUDY OBJECTIVESnWe hypothesized that DNA methylation patterns may contribute to disease severity or the development of hypertension and excessive daytime sleepiness (EDS) in patients with obstructive sleep apnea (OSA).nnnMETHODSnIlluminas (San Diego, CA, USA) DNA methylation 27-K assay was used to identify differentially methylated loci (DML). DNA methylation levels were validated by pyrosequencing. A discovery cohort of 15 patients with OSA and 6 healthy subjects, and a validation cohort of 72 patients with sleep disordered breathing (SDB).nnnRESULTSnMicroarray analysis identified 636 DMLs in patients with OSA versus healthy subjects, and 327 DMLs in patients with OSA and hypertension versus those without hypertension. In the validation cohort, no significant difference in DNA methylation levels of six selected genes was found between the primary snoring subjects and OSA patients (primary outcome). However, a secondary outcome analysis showed that interleukin-1 receptor 2 (IL1R2) promoter methylation (-114 cytosine followed by guanine dinucleotide sequence [CpG] site) was decreased and IL1R2 protein levels were increased in the patients with SDB with an oxygen desaturation index > 30. Androgen receptor (AR) promoter methylation (-531 CpG site) and AR protein levels were both increased in the patients with SDB with an oxygen desaturation index > 30. Natriuretic peptide receptor 2 (NPR2) promoter methylation (-608/-618 CpG sites) were decreased, whereas levels of both NPR2 and serum C type natriuretic peptide protein were increased in the SDB patients with EDS. Speckled protein 140 (SP140) promoter methylation (-194 CpG site) was increased, and SP140 protein levels were decreased in the patients with SDB and EDS.nnnCONCLUSIONSnIL1R2 hypomethylation and AR hypermethylation may constitute an important determinant of disease severity, whereas NPR2 hypomethylation and SP140 hypermethylation may provide a biomarker for vulnerability to EDS in OSA.nnnCOMMENTARYnA commentary on this article appears in this issue on page 723.

Collaboration


Dive into the Ting-Wen Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy H. Wu

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hsuan Liu

Chang Gung University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge