Ting Yu
Academy of Military Medical Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ting Yu.
Journal of Gene Medicine | 2007
Xiaopeng Zhang; Changming Yu; Jian Zhao; Ling Fu; Shaoqiong Yi; Shuling Liu; Ting Yu; Wei Chen
DNA vaccines have been shown to be an effective approach to induce antigen‐specific cellular and humoral immunity. However, the lower immune intensity in clinical trials limits the application of DNA vaccine. Here we intend to develop a new DNA vaccine based on prostate stem‐cell antigen (PSCA), which has been suggested as a potential target for prostate cancer therapy, and enhance the DNA vaccine potency with heat shock proteins (HSPs) as adjuvant.
Virology Journal | 2012
Shipo Wu; Ting Yu; Xiaohong Song; Shaoqiong Yi; Lihua Hou; Wei Chen
BackgroundEbola viruses (EBOVs) cause severe hemorrhagic fever with a high mortality rate. At present, there are no licensed vaccines or efficient therapies to combat EBOV infection. Previous studies have shown that both humoral and cellular immune responses are crucial for controlling Ebola infection. CD8+ T cells play an important role in mediating vaccine-induced protective immunity. The objective of this study was to identify H-2d-specific T cell epitopes in EBOV glycoproteins (GPs).ResultsComputer-assisted algorithms were used to predict H-2d-specific T cell epitopes in two species of EBOV (Sudan and Zaire) GP. The predicted peptides were synthesized and identified in BALB/c mice immunized with replication-deficient adenovirus vectors expressing the EBOV GP. Enzyme-linked immunospot assays and intracellular cytokine staining showed that the peptides RPHTPQFLF (Sudan EBOV), GPCAGDFAF and LYDRLASTV (Zaire EBOV) could stimulate splenoctyes in immunized mice to produce large amounts of interferon-gamma.ConclusionThree peptides within the GPs of two EBOV strains were identified as T cell epitopes. The identification of these epitopes should facilitate the evaluation of vaccines based on the Ebola virus glycoprotein in a BALB/c mouse model.
Biotechnology Letters | 2011
Xinghui Zhao; Junwei Guo; Yingqun Yu; Shaoqiong Yi; Ting Yu; Ling Fu; Lihua Hou; Wei Chen
To optimize Chinese Hamster Ovary (CHO) cell culture to recombinant protein therapeutic production, we stably overexpressed survivin and cyclin D1 in three CHO DG44-derived cell lines. The modifications conferred increases of 56–94% in S-phase fractions and decreases of 33–43% in early-stage apoptosis fractions. Clone 6.3, which expressed the highest levels of survivin and cyclin D1, reached significantly greater cell densities in suspension (2.7xa0×xa0106 cells/ml) following serum deprivation. Nude mice inoculated with the modified cells showed no tumorigenesis suggesting that the CHO DG44-derived cell lines are viable candidates for biopharmaceutical production.
Journal of Biomolecular Screening | 2013
Xinghui Zhao; Zhanzhong Zhao; Junwei Guo; Peitang Huang; Xudong Zhu; Xiaowei Zhou; Zhixin Yang; Lixia Zhao; Long Xu; Junjie Xu; Ling Fu; Jun Zhang; Xiaopeng Zhang; Yunzhu Dong; Gang Huang; Qianfei Wang; Bo Li; Xiaohong Song; Xiuxu Yang; Shuling Liu; Shaoqiong Yi; Ting Yu; Changming Yu; Lihua Hou; Jianmin Li; Wei Chen
Chronic hepatitis B virus (HBV) infection is an independent risk factor for the development of hepatocellular carcinoma (HCC). The HBV HBx gene is frequently identified as an integrant in the chromosomal DNA of patients with HCC. HBx encodes the X protein (HBx), a putative viral oncoprotein that affects transcriptional regulation of several cellular genes. Therefore, HBx may be an ideal target to impede the progression of HBV infection–related HCC. In this study, integrated HBx was transcriptionally downregulated using an artificial transcription factor (ATF). Two three-fingered Cys2-His2 zinc finger (ZF) motifs that specifically recognized two 9-bp DNA sequences regulating HBx expression were identified from a phage-display library. The ZF domains were linked into a six-fingered protein that specified an 18-bp DNA target in the Enhancer I region upstream of HBx. This DNA-binding domain was fused with a Krüppel-associated box (KRAB) transcriptional repression domain to produce an ATF designed to downregulate HBx integrated into the Hep3B HCC cell line. The ATF significantly repressed HBx in a luciferase reporter assay. Stably expressing the ATF in Hep3B cells resulted in significant growth arrest, whereas stably expressing the ATF in an HCC cell line lacking integrated HBx (HepG2) had virtually no effect. The targeted downregulation of integrated HBx is a promising novel approach to inhibiting the progression of HBV infection–related HCC.
Viral Immunology | 2011
Chune Xu; Xiaohong Song; Ling Fu; Dayong Dong; Shipo Wu; Guanlin Li; Shaoqiong Yi; Ting Yu; Rui Yu; Lihua Hou; Wei Chen
The pandemic 2009 H1N1 influenza virus broke out in North America and spread rapidly throughout the world. The type I interferon (IFN) response represents one of the first lines of defense against influenza virus infections. In this study, the protective potential of human exogenous IFN-ω against pandemic 2009 A (H1N1) influenza virus was assessed both in vitro and in guinea pigs. The viral loads of pandemic 2009 A (H1N1) influenza virus strains A/California/04/2009 and A/Beijing/501/2009 were reduced by up to 5000-fold in Caco-2 cells by the addition of human IFN-ω. With daily intranasal treatment with human IFN-ω the viral load of pandemic 2009 A (H1N1) influenza virus strain A/California/04/2009 decreased by 1000-fold in lung tissues of guinea pigs. These results provide strong support for the application of human IFN-ω pretreatment to human influenza control.
Cancer Biotherapy and Radiopharmaceuticals | 2013
Lei Dong; Xiaopeng Zhang; Jun Ren; Shipo Wu; Ting Yu; Lihua Hou; Ling Fu; Shaoqiong Yi; Changming Yu
Prostate stem cell antigen (PSCA) has been considered a potentially worthwhile target for prostate cancer therapy with its overexpression in both androgen-dependent and androgen-independent prostate cancers. However, PSCA is an autoantigen that can evoke immunological tolerance and hardly incite effective immunologic response. In this study, we sought to construct the fusion protein vaccines based on PSCA and heat shock protein 70 (HSP70) and to evaluate their immune responses and therapeutic efficacy. A series of recombinant proteins were prepared, and then, the male C57BL/6 mice were immunized subcutaneously by inoculation with RM-PSCA/Luc cells. The PSCA-specific cellular immune responses were monitored with ELISPOT and intracellular cytokines staining assay, and ELISA assay was used to detect humoral immune responses. The tumor growth was observed by in vivo bioluminescence imaging. The results showed that the mice vaccinated with PSCA-HSP could induce the PSCA-specific cellular and humoral immune responses. Tumor progression could be quantitatively monitored by in vivo bioluminescence imaging. Animal experiments showed that PSCA-HSP could inhibit the growth of PSCA-expressing tumors and prolong the survival time of vaccinated mice. This study supported and confirmed the potential of HSP70 as a chaperone for protein vaccines, and PSCA-HSP could be of potential value for prostate cancer treatment.
Antiviral Research | 2014
Weili Yu; Changming Yu; Ling Wu; Ting Fang; Rui Qiu; Jinlong Zhang; Ting Yu; Ling Fu; Wei Chen; Tao Hu
Recombinant human interferon-ω (rhIFN-ω) exhibits a potent antiviral activity. Because of poor pharmacokinetics (PK) of rhIFN-ω, frequent dosing of rhIFN-ω is necessitated to achieve the sustained antiviral efficacy. PEGylation can efficiently improve the PK of rhIFN-ω while substantially decrease its bioactivity. The structure, antiviral activity and PK of the PEGylated rhIFN-ω were measured to establish their relationship with PEGylation sites, polyethylene glycol (PEG) mass and PEG structure. Accordingly, N-terminus and the lysine residues were selected as the PEGylation sites. PEGs with Mw of 20kDa and 40kDa were used to investigate the effect of PEG mass. Linear and branched PEGs were used to investigate the effect of PEG structure. PEGylation decreased the antiviral activity of rhIFN-ω and improved its PK. The PEGylation sites determine the bioactivity of the PEGylated rhIFN-ω and the conjugated PEG mass determines the PK. N-terminally PEGylated rhIFN-ω with 40kDa linear PEG maintains 21.7% of the rhIFN-ω antiviral activity with a half-life of 139.6h. Thus, N-terminally PEGylated rhIFN-ω with linear 40kDa PEG is a potential antiviral agent for long-acting treatment of the viral diseases.
Experimental and Therapeutic Medicine | 2013
Lei Dong; Xiaopeng Zhang; Changming Yu; Ting Yu; Shuling Liu; Lihua Hou; Ling Fu; Shaoqiong Yi; Wei Chen
The aim of this study was to establish a tumor model in mice with the expression of luciferase (Luc) and human prostate stem cell antigen (PSCA), in order to evaluate the activities of anticancer drugs or vaccines for prostate cancer. RM-1 cells were stably transfected with pcDNA-Luc and pcDNA-PSCA plasmids. The Luc-expressing cells were examined using a luminometer and the PSCA-expressing cells were examined using a reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometric analysis. Male C57BL/6 mice were inoculated subcutaneously with the RM-PSCA/Luc cells, prior to the tumor growth and survival time of the mice being measured, respectively. In vivo bioluminescence imaging was used to detect Luc expression and immunohistochemical analysis was used to detect PSCA expression. Inoculation of the tumor cells into the C57BL/6 mice closely mimicked the tumor growth of prostate cancer. All of the inoculated mice exhibited a detectable tumor within two weeks. Tumor progression was able to be quantitatively monitored following the inoculation of 1×106 RM-PSCA/Luc cells. There was an excellent correlation (R2=0.9849) between the photon counts and tumor volume. The expression of PSCA in tumor tissues was confirmed using immunohistochemical analysis. The Luc and PSCA co-expression tumor model was successfully established in mice, which is likely to accelerate the understanding of the pathogenesis of prostate cancer and facilitate the development of novel antitumor drugs or vaccines for the disease.
Toxins | 2016
Han Wang; Rui Yu; Ting Fang; Ting Yu; Xiangyang Chi; Xiaopeng Zhang; Shuling Liu; Ling Fu; Changming Yu; Wei Chen
Tetanus neurotoxin (TeNT) produced by Clostridium tetani is one of the most poisonous protein substances. Neutralizing antibodies against TeNT can effectively prevent and cure toxicosis. Using purified Hc fragments of TeNT (TeNT-Hc) as an antigen, three specific neutralizing antibody clones recognizing different epitopes were selected from a human immune scFv antibody phage display library. The three antibodies (2-7G, 2-2D, and S-4-7H) can effectively inhibit the binding between TeNT-Hc and differentiated PC-12 cells in vitro. Moreover, 2-7G inhibited TeNT-Hc binding to the receptor via carbohydrate-binding sites of the W pocket while 2-2D and S-4-7H inhibited binding of the R pocket. Although no single mAb completely protected mice from the toxin, they could both prolong survival when challenged with 20 LD50s (50% of the lethal dose) of TeNT. When used together, the mAbs completely neutralized 1000 LD50s/mg Ab, indicating their high neutralizing potency in vivo. Antibodies recognizing different carbohydrate-binding pockets could have higher synergistic toxin neutralization activities than those that recognize the same pockets. These results could lead to further production of neutralizing antibody drugs against TeNT and indicate that using TeNT-Hc as an antigen for screening human antibodies for TeNT intoxication therapy from human immune antibody library was convenient and effective.
Clinical and Vaccine Immunology | 2011
Rui Yu; Shaoqiong Yi; Changming Yu; Ting Fang; Shuling Liu; Ting Yu; Xiaohong Song; Ling Fu; Lihua Hou; Wei Chen
ABSTRACT The C fragment of tetanus neurotoxin (TeNT-Hc) with different conformations was observed due to the four cysteine residues within it which could form different intramolecular disulfide bonds. In this study, we prepared and compared three types of monomeric TeNT-Hc with different conformational components: free sulfhydryls (50 kDa), bound sulfhydryls (44 kDa), and a mixture of the two conformational proteins (half 50 kDa and half 44 kDa). TeNT-Hc with bound sulfhydryls reduced its binding activity to ganglioside GT1b and neuronal PC-12 cells compared to what was seen for TeNT-Hc with free sulfhydryls. However, there was no significant difference among their immunogenicities in mice, including induction of antitetanus toxoid IgG titers, antibody types, and protective capacities against tetanus neurotoxin challenge. Our results showed that the conformational changes of TeNT-Hc resulting from disulfide bond formation reduced its ganglioside-binding activity but did not destroy its immunogenicity, and the protein still retained continuous B cell and T cell epitopes; that is, the presence of the ganglioside-binding site within TeNT-Hc may be not essential for the induction of a fully protective antitetanus response. TeNT-Hc with bound sulfhydryls may be developed into an ideal human vaccine with a lower potential for side effects.