Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tingdong Fu is active.

Publication


Featured researches published by Tingdong Fu.


Plant Journal | 2010

Two duplicate CYP704B1‐homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus

Bin Yi; Fangqin Zeng; Shaolin Lei; Yunin Chen; Xueqin Yao; Yun Zhu; Jing Wen; Jinxiong Shen; Chaozhi Ma; Jinxing Tu; Tingdong Fu

S45A, a double recessive mutant at both the BnMs1 and BnMs2 loci in Brassica napus, produces no pollen in mature anthers and no seeds by self-fertilization. The BnMs1 and BnMs2 genes, which have redundant functions in the control of male fertility, are positioned on linkage groups N7 and N16, respectively, and are located at the same locus on Arabidopsis chromosome 1 based on collinearity between Arabidopsis and Brassica. Complementation tests indicated that one candidate gene, BnCYP704B1, a member of the cytochrome P450 family, can rescue male sterility. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) of the developing anther showed that pollen-wall formation in the mutant was severely compromised, with a lack of sporopollenin or exine. The phenotype was first evident at the tetrad stage (stage 7) of anther development, coinciding with the maximum BnCYP704B1 mRNA accumulation observed in tapetal cells at stages 7-8 (haploid stage). TEM also suggested that development of the tapetum was seriously defective due to the disturbed lipid metabolism in the S45A mutant. A TUNEL assay indicated that the pattern of programmed cell death in the tapetum of the S45A mutant was defective. Lipid analysis showed that the total fatty acid content was reduced in the S45A mutant, indicating that BnCYP704B1 is involved in lipid metabolism. These data suggest that BnCYP704B1 participates in a vital tapetum-specific metabolic pathway that is not only involved in exine formation but is also required for basic tapetal cell development and function.


Theoretical and Applied Genetics | 2012

Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents

Qingyong Yang; Chuchuan Fan; Zhenhua Guo; Jie Qin; Jianzhong Wu; Qingyuan Li; Tingdong Fu; Yongming Zhou

Modification of oleic acid (C18:1) and linolenic acid (C18:3) contents in seeds is one of the major goals for quality breeding after removal of erucic acid in oilseed rape (Brassica napus). The fatty acid desaturase genes FAD2 and FAD3 have been shown as the major genes for the control of C18:1 and C18:3 contents. However, the genome structure and locus distributions of the two gene families in amphidiploid B. napus are still not completely understood to date. In the present study, all copies of FAD2 and FAD3 genes in the A- and C-genome of B. napus and its two diploid progenitor species, Brassica rapa and Brassica oleracea, were identified through bioinformatic analysis and extensive molecular cloning. Two FAD2 genes exist in B. rapa and B. oleracea, and four copies of FAD2 genes exist in B. napus. Three and six copies of FAD3 genes were identified in diploid species and amphidiploid species, respectively. The genetic control of high C18:1 and low C18:3 contents in a double haploid population was investigated through mapping of the quantitative trait loci (QTL) for the traits and the molecular cloning of the underlying genes. One major QTL of BnaA.FAD2.a located on A5 chromosome was responsible for the high C18:1 content. A deleted mutation in the BnaA.FAD2.a locus was uncovered, which represented a previously unidentified allele for the high oleic variation in B. napus species. Two major QTLs on A4 and C4 chromosomes were found to be responsible for the low C18:3 content in the DH population as well as in SW Hickory. Furthermore, several single base pair changes in BnaA.FAD3.b and BnaC.FAD3.b were identified to cause the phenotype of low C18:3 content. Based on the results of genetic mapping and identified sequences, allele-specific markers were developed for FAD2 and FAD3 genes. Particularly, single-nucleotide amplified polymorphisms markers for FAD3 alleles were demonstrated to be a reliable type of SNP markers for unambiguous identification of genotypes with different content of C18:3 in amphidiploid B. napus.


Plant Journal | 2011

BnaC.Tic40, a plastid inner membrane translocon originating from Brassica oleracea, is essential for tapetal function and microspore development in Brassica napus

Xiaoling Dun; Zhengfu Zhou; Shengqian Xia; Jing Wen; Bin Yi; Jinxiong Shen; Chaozhi Ma; Jinxing Tu; Tingdong Fu

Here, we describe the characteristics of a Brassica napus male sterile mutant 7365A with loss of the BnMs3 gene, which exhibits abnormal enlargement of the tapetal cells during meiosis. Later in development, the absence of the BnMs3 gene in the mutant results in a loss of the secretory function of the tapetum, as suggested by abortive callose dissolution and retarded tapetal degradation. The BnaC.Tic40 gene (equivalent to BnMs3) was isolated by a map-based cloning approach and was confirmed by genetic complementation. Sequence analyses suggested that BnaC.Tic40 originated from BolC.Tic40 on the Brassica oleracea linkage group C9, whereas its allele Bnms3 was derived from BraA.Tic40 on the Brassica rapa linkage group A10. The BnaC.Tic40 gene is highly expressed in the tapetum and encodes a putative plastid inner envelope membrane translocon, Tic40, which is localized into the chloroplast. Transmission electron microscopy (TEM) and lipid staining analyses suggested that BnaC.Tic40 is a key factor in controlling lipid accumulation in the tapetal plastids. These data indicate that BnaC.Tic40 participates in specific protein translocation across the inner envelope membrane in the tapetal plastid, which is required for tapetal development and function.


Crop & Pasture Science | 2006

Expression of field resistance under Western Australian conditions to Sclerotinia sclerotiorum in Chinese and Australian Brassica napus and Brassica juncea germplasm and its relation with stem diameter

Caixia Li; Hua Li; Krishnapillai Sivasithamparam; Tingdong Fu; Y.C. Li; S.Y. Liu; Martin J. Barbetti

Sclerotinia stem rot, caused by Sclerotinia sclerotiorum, has become one of the most serious disease problems in oilseed rape-growing areas in Australia. Sources of resistance to this disease have been sought worldwide. In this study, germplasm comprising 42 Brassica napus and 12 Brassica juncea accessions from China and Australia, was screened for resistance to Sclerotinia stem rot under Western Australian field conditions. Resistance was confirmed in some germplasm from China and new sources of resistance were identified in germplasm from Australia. Furthermore, our study found that the severity of stem lesions was related to stem diameter and percentage of the host plants that were dead. It was evident that both stem lesion length and percentage of plant death were at the lowest level when the stem diameter was approximately 10 mm. Smaller or greater stem diameter resulted both in increased stem lesion length and plant death. Stem diameter may be a useful parameter in breeding cultivars of oilseed Brassicas with Sclerotinia resistance.


Planta | 2012

Developmental, cytological and transcriptional analysis of autotetraploid Arabidopsis

Xiaodong Li; Erru Yu; Chuchuan Fan; Chunyu Zhang; Tingdong Fu; Yongming Zhou

An autopolyploid that contains more than two sets of the same chromosomes causes apparent alterations in morphology, development, physiology and gene expression compared to diploid. However, the mechanisms for these changes remain largely unknown. In the present study, cytological observations of mature embryos and growing cotyledons demonstrated that enlarged organ size of an autotetraploid Arabidopsis was caused by cell size and not by cell number. Quantitative real time PCR (qRT-PCR) analysis of 34 core cell cycle genes revealed a subtle but stable increase in the expression of ICK1, ICK2 and ICK5 in autotetraploid seedlings. Autotetraploid Arabidopsis plants were found to be more sensitive to glucose treatment than diploid with decreased number of rosette leaves and suppressed root elongation. Cytological observations demonstrated that both cell proliferation and cell expansion of autotetraploid were dramatically suppressed under glucose treatment. Expression levels of ICK1, ICK5 together with Cyclin D and Cyclin B was increased under glucose treatment in both diploid and autotetraploid plants. These results suggest that ICK1 and ICK5 may be involved in developmental delay and that the suppressed growth under glucose treatment probably resulted from disturbed mitotic and endoreduplication cycle in autotetraploid Arabidopsis.


Theoretical and Applied Genetics | 2010

Mapping of quantitative trait loci and development of allele-specific markers for seed weight in Brassica napus

Chuchuan Fan; Guangqin Cai; Jie Qin; Qingyuan Li; Minggui Yang; Jianzhong Wu; Tingdong Fu; Kede Liu; Yongming Zhou

Seed weight is an important component of grain yield in oilseed rape (Brassica napus L.), but the genetic basis for the important quantitative trait is still not clear. In order to identify the genes for seed weight in oilseed rape, QTL mapping for thousand seed weight (TSW) was conducted with a doubled haploid (DH) population and an F2 population. A complete linkage map of the DH population was constructed using 297 simple sequence repeat (SSR) markers. Among nine TSW QTLs detected, two major QTLs, TSWA7a and TSWA7b, were stably identified across years and collectively explained 27.6–37.9% of the trait variation in the DH population. No significant epistatic interactions for TSW detected in the DH population indicate that the seed weight variation may be primarily attributed to additive effects. The stability and significance of TSWA7a and TSWA7b were further validated in the F2 population with different genetic backgrounds. By cloning BnMINI3a and BnTTG2a, two B. napus homologous genes to Arabidopsis thaliana, allele-specific markers were developed for TSWA5b and TSWA5c, two TSW QTLs on A5, respectively. The importance of the major and minor QTLs identified was further demonstrated by analysis of the allelic effects on TSW in the DH population.


DNA Research | 2015

Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.)

Liping Xu; Kaining Hu; Zhenqian Zhang; Chunyun Guan; Song Chen; Wei Hua; Jiana Li; Jing Wen; Bin Yi; Jinxiong Shen; Chaozhi Ma; Jinxing Tu; Tingdong Fu

Flowering time adaptation is a major breeding goal in the allopolyploid species Brassica napus. To investigate the genetic architecture of flowering time, a genome-wide association study (GWAS) of flowering time was conducted with a diversity panel comprising 523 B. napus cultivars and inbred lines grown in eight different environments. Genotyping was performed with a Brassica 60K Illumina Infinium SNP array. A total of 41 single-nucleotide polymorphisms (SNPs) distributed on 14 chromosomes were found to be associated with flowering time, and 12 SNPs located in the confidence intervals of quantitative trait loci (QTL) identified in previous researches based on linkage analyses. Twenty-five candidate genes were orthologous to Arabidopsis thaliana flowering genes. To further our understanding of the genetic factors influencing flowering time in different environments, GWAS was performed on two derived traits, environment sensitivity and temperature sensitivity. The most significant SNPs were found near Bn-scaff_16362_1-p380982, just 13 kb away from BnaC09g41990D, which is orthologous to A. thaliana CONSTANS (CO), an important gene in the photoperiod flowering pathway. These results provide new insights into the genetic control of flowering time in B. napus and indicate that GWAS is an effective method by which to reveal natural variations of complex traits in B. napus.


PLOS ONE | 2012

A Large Insertion in bHLH Transcription Factor BrTT8 Resulting in Yellow Seed Coat in Brassica rapa

Xia Li; Li Chen; Meiyan Hong; Yan Zhang; Feng Zu; Jing Wen; Bin Yi; Chaozhi Ma; Jinxiong Shen; Jinxing Tu; Tingdong Fu

Yellow seed is a desirable quality trait of the Brassica oilseed species. Previously, several seed coat color genes have been mapped in the Brassica species, but the molecular mechanism is still unknown. In the present investigation, map-based cloning method was used to identify a seed coat color gene, located on A9 in B. rapa. Blast analysis with the Arabidopsis genome showed that there were 22 Arabidopsis genes in this region including at4g09820 to at4g10620. Functional complementation test exhibited a phenotype reversion in the Arabidopsis thaliana tt8-1 mutant and yellow-seeded plant. These results suggested that the candidate gene was a homolog of TRANSPARENT TESTA8 (TT8) locus. BrTT8 regulated the accumulation of proanthocyanidins (PAs) in the seed coat. Sequence analysis of two alleles revealed a large insertion of a new class of transposable elements, Helitron in yellow sarson. In addition, no mRNA expression of BrTT8 was detected in the yellow-seeded line. It indicated that the natural transposon might have caused the loss in function of BrTT8. BrTT8 encodes a basic/helix-loop-helix (bHLH) protein that shares a high degree of similarity with other bHLH proteins in the Brassica. Further expression analysis also revealed that BrTT8 was involved in controlling the late biosynthetic genes (LBGs) of the flavonoid pathway. Our present findings provided with further studies could assist in understanding the molecular mechanism involved in seed coat color formation in Brassica species, which is an important oil yielding quality trait.


Journal of Experimental Botany | 2012

A male sterility-associated cytotoxic protein ORF288 in Brassica juncea causes aborted pollen development

Bing Jing; Shuangping Heng; Dan Tong; Zhengjie Wan; Tingdong Fu; Jinxing Tu; Chaozhi Ma; Bin Yi; Jing Wen; Jinxiong Shen

Cytoplasmic male sterility (CMS) is a widespread phenomenon in higher plants, and several studies have established that this maternally inherited defect is often associated with a mitochondrial mutant. Approximately 10 chimeric genes have been identified as being associated with corresponding CMS systems in the family Brassicaceae, but there is little direct evidence that these genes cause male sterility. In this study, a novel chimeric gene (named orf288) was found to be located downstream of the atp6 gene and co-transcribed with this gene in the hau CMS sterile line. Western blotting analysis showed that this predicted open reading frame (ORF) was translated in the mitochondria of male-sterile plants. Furthermore, the growth of Escherichia coli was significantly repressed in the presence of ORF288, which indicated that this protein is toxic to the E. coli host cells. To confirm further the function of orf288 in male sterility, the gene was fused to a mitochondrial-targeting pre-sequence under the control of the Arabidopsis APETALA3 promoter and introduced into Arabidopsis thaliana. Almost 80% of transgenic plants with orf288 failed to develop anthers. It was also found that the independent expression of orf288 caused male sterility in transgenic plants, even without the transit pre-sequence. Furthermore, transient expression of orf288 and green fluorescent protein (GFP) as a fused protein in A. thaliana protoplasts showed that ORF288 was able to anchor to mitochondria even without the external mitochondrial-targeting peptide. These observations provide important evidence that orf288 is responsible for the male sterility of hau CMS in Brassica juncea.


Crop & Pasture Science | 2007

The importance of the type and time of inoculation and assessment in the determination of resistance in Brassia napus and B. juncea to Sclerotinia sclerotiorum

Caixia Li; Hua Li; A. B. Siddique; Krishnapillai Sivasithamparam; Phil Salisbury; S. S. Banga; Shashi Banga; C. Chattopadhyay; A. Kumar; Rajender Singh; Dhiraj Singh; A. Agnihotri; S. Y. Liu; Y. C. Li; Jinxing Tu; Tingdong Fu; Y. F. Wang; Martin J. Barbetti

Sclerotinia stem rot (SSR) is a significant agricultural problem worldwide. Finding sources of resistance is crucial to the ongoing search for better management of this disease. Brassica germplasm from Australia, China and India was screened for resistance to SSR under Western Australian field conditions following stem inoculation, application of a spray of mycelial suspension, or as a consequence of myceliogenic germination originating from sclerotia resident in soil. Significant differences in response were observed among 53 genotypes using each of the three screening methods. There was a variable impact of the time of inoculation on the disease level depending upon time of assessment post-stem inoculation. However, this impact could be reduced to an insignificant level provided the assessment after stem inoculation was delayed until 3 weeks post-inoculation. The results of these studies indicate that the use of appropriate inoculation and assessment methods could significantly reduce variability in the responses commonly observed in screening for resistance in crop plants against Sclerotinia sclerotiorum.

Collaboration


Dive into the Tingdong Fu's collaboration.

Top Co-Authors

Avatar

Jinxing Tu

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Chaozhi Ma

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jinxiong Shen

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Bin Yi

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jing Wen

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Kaining Hu

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhengjie Wan

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shengqian Xia

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xinghua Li

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Changbin Gao

Huazhong Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge