Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tingting Gu is active.

Publication


Featured researches published by Tingting Gu.


Theoretical and Applied Genetics | 2008

Genetic variation of NBS-LRR class resistance genes in rice lines.

Sihai Yang; Tingting Gu; Chunyu Pan; Zhumei Feng; Jing Ding; Yueyu Hang; Jian-Qun Chen; Dacheng Tian

The use of plant disease resistance (R) genes in breeding programs needs an understanding of their variation patterns. In our current study, we investigated the polymorphisms of 44 NBS-LRR class R-genes among 21 rice cultivars and 14 wild rice populations. Our data suggested that there were four basic types of variations: conserved, diversified, intermediate-diversified, and present/absent patterns. Common characteristics at a locus of conserved R-genes were: copy-number uniformity, clear divergence (long branches) with other paralogs, and highly identical alleles. On the other hand, copy-number variability, a nearly equal and non-zero branch lengths, and high levels of nucleotide diversity were observed at the loci of highly diversified R-genes. Research suggests that the ratio of diverse alleles to the total number of genes at a locus is one of the best criteria to characterize the variation pattern of an R-gene. Our data suggested that a significant genetic reduction was detected only in four present/absent R-genes, compared with the variation observed in wild rice. In general, no difference was detected between wild rice and cultivars, japonica and indica rice, or between lines from different geographic regions. Our results also suggested that R-genes were under strong selection, which shaped R-gene variation patterns.


Genetics | 2010

Avoidance of Long Mononucleotide Repeats in Codon Pair Usage

Tingting Gu; Shengjun Tan; Xiaoxi Gou; Hitoshi Araki; Dacheng Tian

Protein is an essential component for life, and its synthesis is mediated by codons in any organisms on earth. While some codons encode the same amino acid, their usage is often highly biased. There are many factors that can cause the bias, but a potential effect of mononucleotide repeats, which are known to be highly mutable, on codon usage and codon pair preference is largely unknown. In this study we performed a genomic survey on the relationship between mononucleotide repeats and codon pair bias in 53 bacteria, 68 archaea, and 13 eukaryotes. By distinguishing the codon pair bias from the codon usage bias, four general patterns were revealed: strong avoidance of five or six mononucleotide repeats in codon pairs; lower observed/expected (o/e) ratio for codon pairs with C or G repeats (C/G pairs) than that with A or T repeats (A/T pairs); a negative correlation between genomic GC contents and the o/e ratios, particularly for C/G pairs; and avoidance of C/G pairs in highly conserved genes. These results support natural selection against long mononucleotide repeats, which could induce frameshift mutations in coding sequences. The fact that these patterns are found in all kingdoms of life suggests that this is a general phenomenon in living organisms. Thus, long mononucleotide repeats may play an important role in base composition and genetic stability of a gene and gene functions.


Scientific Reports | 2016

Identification and characterization of histone lysine methylation modifiers in Fragaria vesca.

Tingting Gu; Yuhui Han; Ruirui Huang; Richard J. McAvoy; Yi Li

The diploid woodland strawberry (Fragaria vesca) is an important model for fruit crops because of several unique characteristics including the small genome size, an ethylene-independent fruit ripening process, and fruit flesh derived from receptacle tissues rather than the ovary wall which is more typical of fruiting plants. Histone methylation is an important factor in gene regulation in higher plants but little is known about its roles in fruit development. We have identified 45 SET methyltransferase, 22 JmjC demethylase and 4 LSD demethylase genes in F. vesca. The analysis of these histone modifiers in eight plant species supports the clustering of those genes into major classes consistent with their functions. We also provide evidence that whole genome duplication and dispersed duplications via retrotransposons may have played pivotal roles in the expansion of histone modifier genes in F. vesca. Furthermore, transcriptome data demonstrated that expression of some SET genes increase as the fruit develops and peaks at the turning stage. Meanwhile, we have observed that expression of those SET genes responds to cold and heat stresses. Our results indicate that regulation of histone methylation may play a critical role in fruit development as well as responses to abiotic stresses in strawberry.


Molecular Genetics and Genomics | 2016

Characterization of DNA methyltransferase and demethylase genes in Fragaria vesca

Tingting Gu; Shuai Ren; Yuanhua Wang; Yuhui Han; Yi Li

DNA methylation is an epigenetic modification essential for gene regulations in plants, but understanding on how it is involved in fruit development, especially in non-climacteric fleshy fruit, is limited. The diploid woodland strawberry (Fragaria vesca) is an important model for non-climacteric fruit crops. In this study, we identified DNA methyltransferase genes and demethylase genes in Fragaria vesca and other angiosperm species. In accordance with previous studies, our phylogenetic analyses of those DNA methylation modifiers support the clustering of those genes into several classes. Our data indicate that whole-genome duplications and tandem duplications contributed to the expansion of those DNA methylation modifiers in angiosperms. We have further demonstrated that some DNA methylase and demethylase genes reach their highest expression levels in strawberry fleshy fruits when turning from white to red, suggesting that DNA methylation might undergo a dramatic change at the onset of fleshy fruit-ripening process. In addition, we have observed that expression of some DNA demethylase genes increases in response to various abiotic stresses including heat, cold, drought and salinity. Collectively, our study indicates a regulatory role of DNA methylation in the turning stage of non-climacteric fleshy fruit and responses to environment stimuli, and would facilitate functional studies of DNA methylation in the growth and development of non-climacteric fruits.


Frontiers in Plant Science | 2016

Comparative Analysis of DNA Methyltransferase Gene Family in Fungi: A Focus on Basidiomycota

Ruirui Huang; Qiangqiang Ding; Yanan Xiang; Tingting Gu; Yi Li

DNA methylation plays a crucial role in the regulation of gene expression in eukaryotes. Mushrooms belonging to the phylum Basidiomycota are highly valued for both nutritional and pharmaceutical uses. A growing number of studies have demonstrated the significance of DNA methylation in the development of plants and animals. However, our understanding of DNA methylation in mushrooms is limited. In this study, we identified and conducted comprehensive analyses on DNA methyltransferases (DNMtases) in representative species from Basidiomycota and Ascomycota, and obtained new insights into their classification and characterization in fungi. Our results revealed that DNMtases in basidiomycetes can be divided into two classes, the Dnmt1 class and the newly defined Rad8 class. We also demonstrated that the fusion event between the characteristic domains of the DNMtases family and Snf2 family in the Rad8 class is fungi-specific, possibly indicating a functional novelty of Rad8 DNMtases in fungi. Additionally, expression profiles of DNMtases in the edible mushroom Pleurotus ostreatus revealed diverse expression patterns in various organs and developmental stages. For example, DNMtase genes displayed higher expression levels in dikaryons than in monokaryons. Consistent with the expression profiles, we found that dikaryons are more susceptible to the DNA methyltransferase inhibitor 5-azacytidine. Taken together, our findings pinpoint an important role of DNA methylation during the growth of mushrooms and provide a foundation for understanding of DNMtases in basidiomycetes.[This corrects the article on p. 1556 in vol. 7, PMID: 27818666.].


Frontiers in Plant Science | 2017

Transcriptome Analysis Reveals Differential Gene Expression and a Possible Role of Gibberellins in a Shade-Tolerant Mutant of Perennial Ryegrass

Wei Li; Lorenzo Katin-Grazzini; Xianbin Gu; Xiaojing Wang; Rania El-Tanbouly; Huseyin Yer; Chandra Thammina; John C. Inguagiato; Karl Guillard; Richard J. McAvoy; Jill L. Wegrzyn; Tingting Gu; Yi Li

The molecular basis behind shade tolerance in plants is not fully understood. Previously, we have shown that a connection may exist between shade tolerance and dwarfism, however, the mechanism connecting these phenotypes is not well understood. In order to clarify this connection, we analyzed the transcriptome of a previously identified shade-tolerant mutant of perennial ryegrass (Lolium perenne L.) called shadow-1. shadow-1 mutant plants are dwarf, and are significantly tolerant to shade in a number of environments compared to wild-type controls. In this study, we treated shadow-1 and wild-type plants with 95% shade for 2 weeks and compared the transcriptomes of these shade-treated individuals with both genotypes exposed to full light. We identified 2,200 differentially expressed genes (DEGs) (1,096 up-regulated and 1,104 down-regulated) in shadow-1 mutants, compared to wild type, following exposure to shade stress. Of these DEGs, 329 were unique to shadow-1 plants kept under shade and were not found in any other comparisons that we made. We found 2,245 DEGs (1,153 up-regulated and 1,092 down-regulated) in shadow-1 plants, compared to wild-type, under light, with 485 DEGs unique to shadow-1 plants under light. We examined the expression of gibberellin (GA) biosynthesis genes and found that they were down-regulated in shadow-1 plants compared to wild type, notably gibberellin 20 oxidase (GA20ox), which was down-regulated to 3.3% (96.7% reduction) of the wild-type expression level under shade conditions. One GA response gene, lipid transfer protein 3 (LTP3), was also down-regulated to 41.5% in shadow-1 plants under shade conditions when compared to the expression level in the wild type. These data provide valuable insight into a role that GA plays in dwarfism and shade tolerance, as exemplified by shadow-1 plants, and could serve as a guide for plant breeders interested in developing new cultivars with either of these traits.


Frontiers in Plant Science | 2016

Insertions/Deletions-Associated Nucleotide Polymorphism in Arabidopsis thaliana

Changjiang Guo; Jianchang Du; Long Wang; Sihai Yang; Rodney Mauricio; Dacheng Tian; Tingting Gu

Although high levels of within-species variation are commonly observed, a general mechanism for the origin of such variation is still lacking. Insertions and deletions (indels) are a widespread feature of genomes and we hypothesize that there might be an association between indels and patterns of nucleotide polymorphism. Here, we investigate flanking sequences around 18 indels (>100 bp) among a large number of accessions of the plant, Arabidopsis thaliana. We found two distinct haplotypes, i.e., a nucleotide dimorphism, present around each of these indels and dimorphic haplotypes always corresponded to the indel-present/-absent patterns. In addition, the peaks of nucleotide diversity between the two divergent alleles were closely associated with these indels. Thus, there exists a close association between indels and dimorphisms. Further analysis suggests that indel-associated substitutions could be an important component of genetic variation shaping nucleotide polymorphism in Arabidopsis. Finally, we suggest a mechanism by which indels might generate these highly divergent haplotypes. This study provides evidence that nucleotide dimorphisms, which are frequently regarded as evidence of frequency-dependent selection, could be explained simply by structural variation in the genome.


Horticulture research | 2018

A method for the production and expedient screening of CRISPR/Cas9-mediated non-transgenic mutant plants

Longzheng Chen; Wei Li; Lorenzo Katin-Grazzini; Jing Ding; Xianbin Gu; Yanjun Li; Tingting Gu; Ren Wang; Xinchun Lin; Ziniu Deng; Richard J. McAvoy; Frederick G. Gmitter; Zhanao Deng; Yunde Zhao; Yi Li

Developing CRISPR/Cas9-mediated non-transgenic mutants in asexually propagated perennial crop plants is challenging but highly desirable. Here, we report a highly useful method using an Agrobacterium-mediated transient CRISPR/Cas9 gene expression system to create non-transgenic mutant plants without the need for sexual segregation. We have also developed a rapid, cost-effective, and high-throughput mutant screening protocol based on Illumina sequencing followed by high-resolution melting (HRM) analysis. Using tetraploid tobacco as a model species and the phytoene desaturase (PDS) gene as a target, we successfully created and expediently identified mutant plants, which were verified as tetra-allelic mutants. We produced pds mutant shoots at a rate of 47.5% from tobacco leaf explants, without the use of antibiotic selection. Among these pds plants, 17.2% were confirmed to be non-transgenic, for an overall non-transgenic mutation rate of 8.2%. Our method is reliable and effective in creating non-transgenic mutant plants without the need to segregate out transgenes through sexual reproduction. This method should be applicable to many economically important, heterozygous, perennial crop species that are more difficult to regenerate.Crop breeding: A new technique for using CRISPR/Cas9 to create non-transgenic mutant crop plantsA group led by Dr. Yi Li of University of Connecticut, USA has developed a technique to reliably create desirable mutations in crop plants without introducing any foreign DNA, thus generating non-transgenic mutant plants. Their technique will be particularly important for application of genome editing technologies in perennial crop plants. Genome editing technologies have been used to introduce desired mutations into plants but the approach normally incorporates foreign genes such as Cas9 into the plant’s genome. To avoid this, Dr. Li’s team has used Agrobacterium to transiently express the CRISPR/Cas9 components, a bacterium commonly used to genetically engineer plants. With their method, CRISPR/Cas9 from the bacteria edit the plant genome without introducing any foreign DNA, and then a two-step screening process is used to identify non-transgenic mutant plants. This new method provides a reliable and efficient alternative for producing non-transgenic genetically engineered crops.


Molecular Genetics and Genomics | 2017

Bioinformatic and expression analyses on carotenoid dioxygenase genes in fruit development and abiotic stress responses in Fragaria vesca

Yong Wang; Guanqun Ding; Tingting Gu; Jing Ding; Yi Li

Carotenoid dioxygenases, including 9-cis-epoxycarotenoid dioxygenases (NCEDs) and carotenoid cleavage dioxygenases (CCDs), can selectively cleave carotenoids into various apocarotenoid products that play important roles in fleshy fruit development and abiotic stress response. In this study, we identified 12 carotenoid dioxygenase genes in diploid strawberry Fragaria vesca, and explored their evolution with orthologous genes from nine other species. Phylogenetic analyses suggested that the NCED and CCDL groups moderately expanded during their evolution, whereas gene numbers of the CCD1, CCD4, CCD7, and CCD8 groups maintained conserved. We characterized the expression profiles of FveNCED and FveCCD genes during flower and fruit development, and in response to several abiotic stresses. FveNCED1 expression positively responded to osmotic, cold, and heat stresses, whereas FveNCED2 was only induced under cold stress. In contrast, FveNCED2 was the unique gene highly and continuously increasing in receptacle during fruit ripening, which co-occurred with the increase in endogenous abscisic acid (ABA) content previously reported in octoploid strawberry. The differential expression patterns suggested that FveNCED1 and FveNCED2 were key genes for ABA biosynthesis in abiotic stress responses and fruit ripening, respectively. FveCCD1 exhibited the highest expression in most stages of flower and fruit development, while the other FveCCDs were expressed in a subset of stages and tissues. Our study suggests distinct functions of FveNCED and FveCCD genes in fruit development and stress responses and lays a foundation for future study to understand the roles of these genes and their metabolites, including ABA and other apocarotenoid products, in the growth and development of strawberry.


Acta Physiologiae Plantarum | 2016

Identification and expression analysis of cytokinin response regulators in Fragaria vesca

Yingchun Yang; Yun Jiang; Xianna Mi; Lijun Gan; Tingting Gu; Jing Ding; Yi Li

Cytokinin response regulators (RRs) are important components of the two component signal systems, which are involved in the regulation of plant growth and development, and in the response to abiotic stress. In this study, 18 cytokinin RR genes were identified in Fragaria vesca through the genome-wide search. They were further classified into three types: type-A (FvRR1–7), type-B (FvRR8–14) and type-C (FvRR15–18) according to the domain architecture and the phylogeny. Phylogenetic analysis demonstrated that most cytokinin response regulators of F. vesca and Arabidopsis formed clear orthologous pairs. Expression patterns of the cytokinin FvRR genes in various tissues and organs at reproductive stages were detected in this study. Additionally, gene expression response patterns to ABA and abiotic stresses including high temperature and osmotic stress were investigated. The results showed that different types of cytokinin FvRRs have different expression patterns, suggesting the functional differentiation of cytokinin FvRRs during the evolution. This systematic study provides insights into possible functions of the cytokinin FvRR genes and a basis for further functional analysis.

Collaboration


Dive into the Tingting Gu's collaboration.

Top Co-Authors

Avatar

Yi Li

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruirui Huang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Li

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Xianbin Gu

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Qiangqiang Ding

Nanjing Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge