Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tingting Hou is active.

Publication


Featured researches published by Tingting Hou.


Journal of Molecular Medicine | 2013

Imaging ROS signaling in cells and animals

Xianhua Wang; Huaqiang Fang; Zhanglong Huang; Wei Shang; Tingting Hou; Aiwu Cheng; Heping Cheng

Reactive oxygen species (ROS) act as essential cellular messengers, redox regulators, and, when in excess, oxidative stressors that are widely implicated in pathologies of cancer and cardiovascular and neurodegenerative diseases. Understanding such complexity of the ROS signaling is critically hinged on the ability to visualize and quantify local, compartmental, and global ROS dynamics at high selectivity, sensitivity, and spatiotemporal resolution. The past decade has witnessed significant progress in ROS imaging at levels of intact cells, whole organs or tissues, and even live organisms. In particular, major advances include the development of novel synthetic or genetically encoded fluorescent protein-based ROS indicators, the use of protein indicator-expressing animal models, and the advent of in vivo imaging technology. Innovative ROS imaging has led to important discoveries in ROS signaling—for example, mitochondrial superoxide flashes as elemental ROS signaling events and hydrogen peroxide transients for wound healing. This review aims at providing an update of the current status in ROS imaging, while identifying areas of insufficient knowledge and highlighting emerging research directions.


Journal of Biological Chemistry | 2013

Synergistic Triggering of Superoxide Flashes by Mitochondrial Ca2+ Uniport and Basal Reactive Oxygen Species Elevation

Tingting Hou; Xing Zhang; Jiejia Xu; Chongshu Jian; Zhanglong Huang; Tao Ye; Keping Hu; Ming Zheng; Feng Gao; Xianhua Wang; Heping Cheng

Background: Superoxide flashes are newly discovered elemental mitochondrial ROS signaling events and reflect transient openings of mPTP. Results: Mitochondrial Ca2+ uniport and basal ROS elevation synergistically trigger superoxide flashes. Conclusion: Superoxide flashes are regulated by physiological levels of Ca2+ and ROS. Significance: Demonstrating Ca2+- and ROS-induced flash activation sheds new light on physiological regulation and possible roles of mPTP. Mitochondrial superoxide flashes reflect a quantal, bursting mode of reactive oxygen species (ROS) production that arises from stochastic, transient opening of the mitochondrial permeability transition pore (mPTP) in many types of cells and in living animals. However, the regulatory mechanisms and the exact nature of the flash-coupled mPTP remain poorly understood. Here we demonstrate a profound synergistic effect between mitochondrial Ca2+ uniport and elevated basal ROS production in triggering superoxide flashes in intact cells. Hyperosmotic stress potently augmented the flash activity while simultaneously elevating mitochondrial Ca2+ and ROS. Blocking mitochondrial Ca2+ transport by knockdown of MICU1 or MCU, newly identified components of the mitochondrial Ca2+ uniporter, or scavenging mitochondrial basal ROS markedly diminished the flash response. More importantly, whereas elevating Ca2+ or ROS production alone was inefficacious in triggering the flashes, concurrent physiological Ca2+ and ROS elevation served as the most powerful flash activator, increasing the flash incidence by an order of magnitude. Functionally, superoxide flashes in response to hyperosmotic stress participated in the activation of JNK and p38. Thus, physiological levels of mitochondrial Ca2+ and ROS synergistically regulate stochastic mPTP opening and quantal ROS production in intact cells, marking the flash as a coincidence detector of mitochondrial Ca2+ and ROS signals.


The Journal of Physiology | 2014

Mitochondrial flashes: new insights into mitochondrial ROS signalling and beyond

Tingting Hou; Xianhua Wang; Qi Ma; Heping Cheng

Respiratory mitochondria undergo stochastic, intermittent bursts of superoxide production accompanied by transient depolarization of the mitochondrial membrane potential and reversible opening of the membrane permeability transition pore. These discrete events were named ‘superoxide flashes’ for the reactive oxygen species (ROS) signal involved, and ‘mitochondrial flashes’ (mitoflashes) for the entirety of the multifaceted and intertwined mitochondrial processes. In contrast to the flashless basal ROS production of ‘homeostatic ROS’ for redox regulation, bursting ROS production during mitoflashes may provide ‘signalling ROS’ at the organelle level, fulfilling distinctly different cell functions. Mounting evidence indicates that mitoflash frequency is richly regulated over a broad range, and represents a novel, universal, and ‘digital’ readout of mitochondrial functional status and of the mitochondrial stress response. An emerging view is that mitoflashes participate in vital processes including metabolism, cell differentiation, the stress response and ageing. These recent advances shed new light on the role of mitochondrial functional dynamics in health and disease.


Life Sciences | 2013

Superoxide constitutes a major signal of mitochondrial superoxide flash.

Xing Zhang; Zhanglong Huang; Tingting Hou; Jiejia Xu; Yanru Wang; Wei Shang; Tao Ye; Heping Cheng; Feng Gao; Xianhua Wang

AIMS Mitochondrial flashes detected with an N- and C-terminal circularly-permuted yellow fluorescent protein (cpYFP) have been thought to represent transient and quantal bursts of superoxide production under physiological, stressful and pathophysiological conditions. However, the superoxide nature of the cpYFP-flash has been challenged, considering the pH-sensitivity of cpYFP and the distinctive regulation of the flash versus the basal production of mitochondrial reactive oxygen species (ROS). Thus, the aim of the study is to further determine the origin of mitochondrial flashes. MAIN METHODS We investigated the origin of the flashes using the widely-used pH-insensitive ROS indicators, mitoSOX, an indicator for superoxide, and 2, 7-dichlorodihydrofluorescein diacetate (DCF), an indicator for H2O2 and other oxidants. KEY FINDINGS Robust, quantal, and stochastic mitochondrial flashes were detected with either mitoSOX or DCF in several cell-types and in mitochondria isolated from the heart. Both mitoSOX-flashes and DCF-flashes showed similar incidence and kinetics to those of cpYFP-flashes, and were equally sensitive to mitochondria-targeted antioxidants. Furthermore, they were markedly decreased by inhibitors or an uncoupler of the mitochondrial electron transport chain, as is the case with cpYFP-flashes. The involvement of the mitochondrial permeability transition pore in DCF-flashes was evidenced by the coincidental loss of mitochondrial membrane potential and matrix-enriched rhod-2, as well as by their sensitivity to cyclosporine A. SIGNIFICANCE These data indicate that all the three types of mitochondrial flashes stem from the common physiological process of bursting superoxide and ensuing H2O2 production in the matrix of single mitochondrion.


Acta Biochimica et Biophysica Sinica | 2011

Differential mitochondrial calcium responses in different cell types detected with a mitochondrial calcium fluorescent indicator, mito-GCaMP2.

Min Chen; Yanru Wang; Tingting Hou; Huiliang Zhang; Aijuan Qu; Xianhua Wang

Mitochondrial calcium plays a crucial role in mitochondrial metabolism, cell calcium handling, and cell death. However, some mechanisms concerning mitochondrial calcium regulation are still unknown, especially how mitochondrial calcium couples with cytosolic calcium. In this work, we constructed a novel mitochondrial calcium fluorescent indicator (mito-GCaMP2) by genetic manipulation. Mito-GCaMP2 was imported into mitochondria with high efficiency and the fluorescent signals co-localized with that of tetramethyl rhodamine methyl ester, a mitochondrial membrane potential indicator. The mitochondrial inhibitors specifically decreased the signals of mito-GCaMP2. The apparent K(d) of mito-GCaMP2 was 195.0 nmol/L at pH 8.0 in adult rat cardiomyocytes. Furthermore, we observed that mito-GCaMP2 preferred the alkaline pH surrounding of mitochondria. In HeLa cells, we found that mitochondrial calcium ([Ca(2+)](mito)) responded to the changes of cytosolic calcium ([Ca(2+)](cyto)) induced by histamine or thapasigargin. Moreover, external Ca(2+) (100 μmol/L) directly induced an increase of [Ca(2+)](mito) in permeabilized HeLa cells. However, in rat cardiomyocytes [Ca(2+)](mito) did not respond to cytosolic calcium transients stimulated by electric pacing or caffeine. In permeabilized cardiomyocytes, 600 nmol/L free Ca(2+) repeatedly increased the fluorescent signals of mito-GCaMP2, which excluded the possibility that mito-GCaMP2 lost its function in cardiomyocytes mitochondria. These results showed that the response of mitochondrial calcium is diverse in different cell lineages and suggested that mitochondria in cardiomyocytes may have a special defense mechanism to control calcium flux.


Science China-life Sciences | 2014

Regulation of superoxide flashes by transient and steady mitochondrial calcium elevations

Chongshu Jian; Tingting Hou; Rongkang Yin; Heping Cheng; Xianhua Wang

The mitochondria play essential roles in both intracellular calcium and reactive oxygen species signaling. As a newly discovered universal and fundamental mitochondrial phenomenon, superoxide flashes reflect transient bursts of superoxide production in the matrix of single mitochondria. Whether and how the superoxide flash activity is regulated by mitochondrial calcium remain largely unknown. Here we demonstrate that elevating mitochondrial calcium either by the calcium ionophore ionomycin or by increasing the bathing calcium in permeabilized HeLa cells increases superoxide flash incidence, and inhibition of the mitochondrial calcium uniporter activity abolishes the flash response. Quantitatively, the superoxide flash incidence is correlated to the steady-state mitochondrial calcium elevation with 1.7-fold increase per 1.0 ΔF/F0 of Rhod-2 signal. In contrast, large mitochondrial calcium transients (e.g., peak ΔF/F0 ∼2.8, duration ∼2 min) in the absence of steady-state elevations failed to alter the flash activity. These results indicate that physiological levels of sustained, but not transient, mitochondrial calcium elevation acts as a potent regulator of superoxide flashes, but its mechanism of action likely involves a multi-step, slow-onset process.


Cell Calcium | 2016

Identification of EFHD1 as a novel Ca(2+) sensor for mitoflash activation.

Tingting Hou; Chongshu Jian; Jiejia Xu; August Yue Huang; Jianzhong Xi; Keping Hu; Liping Wei; Heping Cheng; Xianhua Wang

Mitochondrial flashes (mitoflashes) represent stochastic and discrete mitochondrial events that each comprises a burst of superoxide production accompanied by transient depolarization and matrix alkalinization in a respiratory mitochondrion. While mitochondrial Ca(2+) is shown to be an important regulator of mitoflash activity, little is known about its specific mechanism of action. Here we sought to determine possible molecular players that mediate the Ca(2+) regulation of mitoflashes by screening mitochondrial proteins containing the Ca(2+)-binding motifs. In silico analysis and targeted siRNA screening identified four mitoflash activators (MICU1, EFHD1, SLC25A23, SLC25A25) and one mitoflash inhibitor (LETM1) in terms of their ability to modulate mitoflash response to hyperosmotic stress. In particular, overexpression or down-regulation of EFHD1 enhanced or depressed mitoflash activation, respectively, under various conditions of mitochondrial Ca(2+) elevations. Yet, it did not alter mitochondrial Ca(2+) handling, mitochondrial respiration, or ROS-induced mitoflash production. Further, disruption of the two EF-hand motifs of EFHD1 abolished its potentiating effect on the mitoflash responses. These results indicate that EFHD1 functions as a novel mitochondrial Ca(2+) sensor underlying Ca(2+)-dependent activation of mitoflashes.


eLife | 2017

Mitochondrial flashes regulate ATP homeostasis in the heart

Xianhua Wang; Xing Zhang; Di Wu; Zhanglong Huang; Tingting Hou; Chongshu Jian; Peng Yu; Fujian Lu; Rufeng Zhang; Tao Sun; Jinghang Li; Wenfeng Qi; Yanru Wang; Feng Gao; Heping Cheng

The maintenance of a constant ATP level (‘set-point’) is a vital homeostatic function shared by eukaryotic cells. In particular, mammalian myocardium exquisitely safeguards its ATP set-point despite 10-fold fluctuations in cardiac workload. However, the exact mechanisms underlying this regulation of ATP homeostasis remain elusive. Here we show mitochondrial flashes (mitoflashes), recently discovered dynamic activity of mitochondria, play an essential role for the auto-regulation of ATP set-point in the heart. Specifically, mitoflashes negatively regulate ATP production in isolated respiring mitochondria and, their activity waxes and wanes to counteract the ATP supply-demand imbalance caused by superfluous substrate and altered workload in cardiomyocytes. Moreover, manipulating mitoflash activity is sufficient to inversely shift the otherwise stable ATP set-point. Mechanistically, the Bcl-xL-regulated proton leakage through F1Fo-ATP synthase appears to mediate the coupling between mitoflash production and ATP set-point regulation. These findings indicate mitoflashes appear to constitute a digital auto-regulator for ATP homeostasis in the heart. DOI: http://dx.doi.org/10.7554/eLife.23908.001


Journal of Cell Science | 2017

Deficiency of PHB complex impairs respiratory supercomplex formation and activates mitochondrial flashes

Chongshu Jian; Fengli Xu; Tingting Hou; Tao Sun; Jinghang Li; Heping Cheng; Xianhua Wang

ABSTRACT Prohibitins (PHBs; prohibitin 1, PHB1 or PHB, and prohibitin 2, PHB2) are evolutionarily conserved and ubiquitously expressed mitochondrial proteins. PHBs form multimeric ring complexes acting as scaffolds in the inner mitochondrial membrane. Mitochondrial flashes (mitoflashes) are newly discovered mitochondrial signaling events that reflect electrical and chemical excitations of the organelle. Here, we investigate the possible roles of PHBs in the regulation of mitoflash signaling. Downregulation of PHBs increases mitoflash frequency by up to 5.4-fold due to elevated basal reactive oxygen species (ROS) production in the mitochondria. Mechanistically, PHB deficiency impairs the formation of mitochondrial respiratory supercomplexes (RSCs) without altering the abundance of individual respiratory complex subunits. These impairments induced by PHB deficiency are effectively rescued by co-expression of PHB1 and PHB2, indicating that the multimeric PHB complex acts as the functional unit. Furthermore, downregulating other RSC assembly factors, including SCAFI (also known as COX7A2L), RCF1a (HIGD1A), RCF1b (HIGD2A), UQCC3 and SLP2 (STOML2), all activate mitoflashes through elevating mitochondrial ROS production. Our findings identify the PHB complex as a new regulator of RSC formation and mitoflash signaling, and delineate a general relationship among RSC formation, basal ROS production and mitoflash biogenesis. Summary: The prohibitin (PHB) complex has a novel role in regulating mitoflash activity by affecting respiratory supercomplex formation and, thus, basal mitochondrial ROS production.


Archive | 2016

Mitochondrial Flashes: Elemental Signaling Events in Eukaryotic Cells

Gaomin Feng; Beibei Liu; Tingting Hou; Xianhua Wang; Heping Cheng

Mitochondrial flashes (mitoflashes) are recently discovered mitochondrial activity which reflects chemical and electrical excitation of the organelle. Emerging evidence indicates that mitoflashes represent highly regulated, elementary signaling events that play important roles in physiological and pathophysiological processes in eukaryotes. Furthermore, they are regulated by mitochondrial ROS, Ca2+, and protons, and are intertwined with mitochondrial metabolic processes. As such, targeting mitoflash activity may provide a novel means for the control of mitochondrial metabolism and signaling in health and disease. In this brief review, we summarize salient features and mechanisms of biogenesis of mitoflashes, and synthesize data on mitoflash biology in the context of metabolism, cell differentiation, stress response, disease, and ageing.

Collaboration


Dive into the Tingting Hou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xing Zhang

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feng Gao

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge