Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tingting Lin is active.

Publication


Featured researches published by Tingting Lin.


Review of Scientific Instruments | 2014

High-sensitivity cooled coil system for nuclear magnetic resonance in kHz range

Tingting Lin; Yi Zhang; Yong-Ho Lee; Hans-Joachim Krause; Jun Lin; Jing Zhao

In several low-field Nuclear Magnetic Resonance (LF-NMR) and surface nuclear magnetic resonance applications, i.e., in the frequency range of kHz, high sensitivity magnetic field detectors are needed. Usually, low-Tc superconducting quantum interference devices (SQUIDs) with a high field sensitivity of about 1 fT/Hz(1/2) are employed as detectors. Considering the flux trapping and operational difficulties associated with low-Tc SQUIDs, we designed and fabricated liquid-nitrogen-cooled Cu coils for NMR detection in the kHz range. A cooled coil system consisting of a 9-cm diameter Cu coil and a low noise preamplifier was systematically investigated and reached a sensitivity of 2 fT/Hz(1/2) at 77 K, which is 3 times better compared to the sensitivity at 300 K. A Q-switch circuit as an essential element for damping the ringing effects of the pickup coil was developed to acquire free induction decay signals of a water sample with minimum loss of signal. Our studies demonstrate that cooled Cu coils, if designed properly, can provide a comparable sensitivity to low-Tc SQUIDs.


Sensors | 2017

Development of a Rigid One-Meter-Side and Cooled Coil Sensor at 77 K for Magnetic Resonance Sounding to Detect Subsurface Water Sources

Jun Lin; Guanfeng Du; Jian Zhang; Xiaofeng Yi; Chuandong Jiang; Tingting Lin

Magnetic resonance sounding (MRS) using the Earth’s magnetic field is a noninvasive and on-site geophysical technique providing quantitative characteristics of aquifers in the subsurface. When the MRS technology is applied in a mine or tunnel for advance detecting the source of water that may cause disastrous accident, spatial constraints limit the size of coil sensor and thus lower the detection capability. In this paper, a coil sensor for detecting the weak MRS signal is designed and the signal to noise (SNR) for the coil sensor is analyzed and optimized. The coil sensor has a rigid structure and square size of 1 m for deploying in a narrow underground space and is cooled at a low temperature of 77 K for improving the SNR. A theoretical calculation and an experimental test in an electromagnetically shielded room (EMSR) show that the optimal design of coil sensor consists of an 80-turn coil and a low-current-noise preamplifier AD745. It has a field sensitivity of 0.17 fT/Hz in the EMSR at 77 K, which is superior to the low temperature Superconducting Quantum Interference Device (LT SQUID) that is the latest application in MRS and the cooled coil with a diameter of 9 cm when detecting the laboratory NMR signal in kHz range. In the field experiment above the Taipingchi Reservoir near Changchun in China, the cooled coil sensor (CCS) developed in this paper has successfully obtained a valid weak MRS signal in high noise environment. The field results showed that the quality of measured MRS signal at 77 K is significantly superior to that at 298 K and the SNR is improved up to three times. This property of CCS makes the MRS instrument more convenient and reliable in a constricted space underground engineering environment (e.g., a mine or a tunnel).


IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 2016

A Para-Whole Space Model for Underground Magnetic Resonance Sounding Studies

Tingting Lin; Yang Zhang; Ling Wan; Yongxing Qu; Jun Lin

Determining the presence of water ahead of a tunnel face or mine well is important for preventing accidents and ensuring higher efficiency in underground engineering. The surface magnetic resonance sounding (SMRS) technique can provide more direct and quantitative estimates of subsurface water variations than other geophysical methods. However, MRS is more complicated when it is performed in underground conditions (UMRS), i.e., interference water often exists and produces an SMRS signal in the opposite direction to the detection direction. Therefore, para-whole space theories are proposed to apply MRS in underground engineering to identify interference water. Singular value decomposition (SVD) inversion algorithms and a model resolution matrix in SMRS were implemented in UMRS. By using a para-whole space model, the impact of the hollow area of the tunnel is effectively removed from the calculation results to distinguish the interference water in the aquifer. A comparison of the inversion results from half space and whole space models shows that the para-whole space model can produce more accurate inversion results of the location and amount of subsurface water. Our research provides a theoretical foundation for MRS detection in tunnels or mines.


Sensors | 2017

Design of a Matching Network for a High-Sensitivity Broadband Magnetic Resonance Sounding Coil Sensor

Yang Zhang; Fei Teng; Suhang Li; Ling Wan; Tingting Lin

The magnetic resonance sounding (MRS) technique is a non-invasive geophysical method that can provide unique insights into the hydrological properties of groundwater. The Cu coil sensor is the preferred choice for detecting the weak MRS signal because of its high sensitivity, low fabrication complexity and low cost. The tuned configuration was traditionally used for the MRS coil sensor design because of its high sensitivity and narrowband filtering. However, its narrow bandwidth may distort the MRS signals. To address this issue, a non-tuned design exhibiting a broad bandwidth has emerged recently, however, the sensitivity decreases as the bandwidth increases. Moreover, the effect of the MRS applications is often seriously influenced by power harmonic noises in the developed areas, especially low-frequency harmonics, resulting in saturation of the coil sensor, regardless of the tuned or non-tuned configuration. To solve the two aforementioned problems, we propose a matching network consisting of an LC broadband filter in parallel with a matching capacitor and provide a design for a coil sensor with a matching network (CSMN). The theoretical parameter calculations and the equivalent schematic of the CSMN with noise sources are investigated, and the sensitivity of the CSMN is evaluated by the Allan variance and the signal-to-noise ratio (SNR). Correspondingly, we constructed the CSMN with a 3 dB bandwidth, passband gain, normalized equivalent input noise and sensitivity (detection limit) of 1030 Hz, 4.6 dB, 1.78 nV/(Hz)1/2 @ 2 kHz and 3 nV, respectively. Experimental tests in the laboratory show that the CSMN can not only improve the sensitivity, but also inhibit the signal distortion by suppressing power harmonic noises in the strong electromagnetic interference environment. Finally, a field experiment is performed with the CSMN to show a valid measurement of the signals of an MRS instrument system.


Review of Scientific Instruments | 2017

Anti-saturation system for surface nuclear magnetic resonance in efficient groundwater detection

Jun Lin; Yang Zhang; Yujing Yang; Yong Sun; Tingting Lin

Compared to other geophysical techniques, the surface nuclear magnetic resonance (SNMR) method could provide unique insights into the hydrologic properties of groundwater in the subsurface. However, the SNMR signal is in the order of nanovolts (10-9 V), and the complex environmental noise, i.e., the spike and the harmony noise (10-4 V), can reach up to 105 times the signal amplitude. Saturation of the amplifier is therefore a serious problem in current SNMR systems. In this study, we propose an anti-saturation method based on an instantaneous floating-point amplifier. The gain of a programmable amplifier is controlled by the value of the input signal. A regulating speed of 50 kS/s is thus achieved to satisfy the self-adaptive adjustment of the real-time SNMR system, which replaces the original man-made setting gain. A large dynamic range of 192.65 dB with a 24-bit high speed analog-digital converter module is then implemented. Compared to traditional SNMR instruments, whose magnification factor is fixed during the experiment, our system can effectively inhibit the distortion of the SNMR signal in both laboratory and field settings. Furthermore, an improved SNR, which is realized by the real-time SNMR system, enables the accurate inversion of the aquifer. Our study broadens the applicability of SNMR systems to use in and around developed areas.


Bioelectromagnetics | 2014

A moderate static magnetic field enhances TRAIL-induced apoptosis by the inhibition of Cdc2 and subsequent downregulation of survivin in human breast carcinoma cells

Tingting Lin; Ling Wan; Xin Qi; Wenlong Shi; Jun Lin

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) exhibits its potent antitumor activity via membrane receptors on cancer cells without deleterious side effects for normal tissue. However, as many other cancer types, breast cancer cells develop a resistance to TRAIL. In the present study, we reported that exposure to 3.0 mT static magnetic field (SMF) mediated the sensitization of breast cancer cells to TRAIL-induced apoptosis. This effect was significantly reduced by the forced expression of survivin, suggesting the sensitization was mediated at least in part through the inhibition of survivin expression. In addition, SMF alone or in combination with TRAIL induced a cell cycle arrest within the G2 /M phase, and the reduction in the survivin protein level was associated with the downregulated expression of Cdc2, a cyclin B-dependent kinase that is necessary for the entry into the M phase. Taken together, our results demonstrated that SMF promoted TRAIL-induced apoptosis by inhibiting the expression of Cdc2 and, subsequently, survivin. Of note, SMF did not sensitize untransformed human mammary epithelial cells to TRAIL-mediated apoptosis. Therefore, the combined treatment of SMF and TRAIL may offer an attractive strategy for safely treating resistant breast cancers.


Sensors | 2018

Exploring on the Sensitivity Changes of the LC Resonance Magnetic Sensors Affected by Superposed Ringing Signals

Tingting Lin; Kun Zhou; Sijia Yu; Pengfei Wang; Ling Wan; Jing Zhao

LC resonance magnetic sensors are widely used in low-field nuclear magnetic resonance (LF-NMR) and surface nuclear magnetic resonance (SNMR) due to their high sensitivity, low cost and simple design. In magnetically shielded rooms, LC resonance magnetic sensors can exhibit sensitivities at the fT/√Hz level in the kHz range. However, since the equivalent magnetic field noise of this type of sensor is greatly affected by the environment, weak signals are often submerged in practical applications, resulting in relatively low signal-to-noise ratios (SNRs). To determine why noise increases in unshielded environments, we analysed the noise levels of an LC resonance magnetic sensor (L ≠ 0) and a Hall sensor (L ≈ 0) in different environments. The experiments and simulations indicated that the superposed ringing of the LC resonance magnetic sensors led to the observed increase in white noise level caused by environmental interference. Nevertheless, ringing is an inherent characteristic of LC resonance magnetic sensors. It cannot be eliminated when environmental interference exists. In response to this problem, we proposed a method that uses matching resistors with various values to adjust the quality factor Q of the LC resonance magnetic sensor in different measurement environments to obtain the best sensitivity. The LF-NMR experiment in the laboratory showed that the SNR is improved significantly when the LC resonance magnetic sensor with the best sensitivity is selected for signal acquisition in the light of the test environment. (When the matching resistance is 10 kΩ, the SNR is 3.46 times that of 510 Ω). This study improves LC resonance magnetic sensors for nuclear magnetic resonance (NMR) detection in a variety of environments.


international conference on electronics and information engineering | 2017

Array high-sensitivity room temperature coil system for SNMR detection in shallow depth

Tingting Lin; Kunyu Xie; Siyuan Zhang; Jing Zhao; Jun Lin

The noninvasive method of surface nuclear magnetic resonance (SNMR) is a geophysical technique that is directly sensitive to hydrogen protons, besides it can exploit the NMR phenomenon for a quantitative determination of the subsurface groundwater distribution. Traditionally, SNMR utilizes large surface coils for both transmitting excitation pulses and recording the groundwater response. While, in recent research, a low Tc-SQUIDs is taken as a new sensor to replace the large receiving coil (Rx), which performing the best sensitivity for the shallow depth. Nevertheless, SQUID is with the problems of flux trapping and operational difficulties. In this paper, we introduce a room temperature coil system. A Cu coil with diameter of 1 m and a low noise preamplifier was systematically investigated and reached a sensitivity of 0.2fT/Hz1/2.Four preamplifiers are chosen for optimizing the pickup coils. The resolution studies for the array coil systems were performed, and the optimum distance between the adjacent pickup coils to achieve a better experimental results especially for the shallow depth. Our study enable the further use of the room temperature coil for SNMR shallow depth detections.


international conference on electronics and information engineering | 2017

Removal of correlated noise online for in situ measurements by using multichannel magnetic resonance sounding system

Tingting Lin; Siyuan Zhang; Yang Zhang; Ling Wan; Jun Lin

Compared with the other geophysical approaches, magnetic resonance sounding (MRS) technique is direct and nondestructive in subsurface water exploration. It provides water content distribution and estimates hydrogeological properties. The biggest challenge is that MRS measurement always suffers bad signal-to-noise ratio, and it can be carried out only far from sources of noise. To solve this problem, a series of de-noising methods are developed. However, most of them are post-processing, leading the data quality uncontrolled for in situ measurements. In the present study, a new approach that removal of correlated noise online is found to overcome the restriction. Based on LabVIEW, a method is provided to enable online data quality control by the way of realizing signal acquisition and noise filtering simultaneously. Using one or more reference coils, adaptive noise cancellation based on LabVIEW to eliminate the correlated noise is available for in situ measurements. The approach was examined through numerical simulation and field measurements. The correlated noise is mitigated effectively and the application of MRS measurements is feasible in high-level noise environment. The method shortens the measurement time and improves the measurement efficiency.


Symposium on the Application of Geophysics to Engineering and Environmental Problems 2018 | 2018

PRE-POLARIZATION USINGU IN ADIABATIC PULSES FOR DETECTION OF SURFACE NUCLEAR MAGNETIC RESONANCE

Tingting Lin; Yujing Yang; Jian Chen; Ling Wan; Jun Lin

Collaboration


Dive into the Tingting Lin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge