Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tingting Meng is active.

Publication


Featured researches published by Tingting Meng.


Journal of Controlled Release | 2015

Selective redox-responsive drug release in tumor cells mediated by chitosan based glycolipid-like nanocarrier

Yingwen Hu; Yong-Zhong Du; Na Liu; Xuan Liu; Tingting Meng; Bolin Cheng; Jiabei He; Jian You; Hong Yuan; Fu-Qiang Hu

The redox responsive nanocarriers have made a considerable progress in achieving triggered drug release by responding to the endogenous occurring difference between the extra- and intra- cellular redox environments. Despite the promises, this redox difference exists both in normal and tumor tissue. So a non-selective redox responsive drug delivery system may result in an undesired drug release in normal cells and relevant side-effects. To overcome these limitations, we have developed a chitosan based glycolipid-like nanocarrier (CSO-ss-SA) which selectively responded to the reducing environment in tumor cells. The CSO-ss-SA showed an improved reduction-sensitivity which only fast degraded and released drug in 10mM levels of glutathione (GSH). The CSO-ss-SA could transport the drug fast into the human ovarian cancer SKOV-3 cells and human normal liver L-02 cells by internalization, but only fast release drug in SKOV-3 cells. By regulating the intracellular GSH concentration in SKOV-3 cells, it indicated that the cellular inhibition of the PTX-loaded CSO-ss-SA showed a positive correlation with the GSH concentration. The CSO-ss-SA was mainly located in the liver, spleen and tumor in vivo, which evidenced the passive tumor targeting ability. Despite the high uptake of liver and spleen, drug release was mainly occurred in tumor. PTX-loaded CSO-ss-SA achieved a remarkable tumor growth inhibition effect with rather low dose of PTX. This study demonstrates that a smartly designed glycolipid-like nanocarrier with selective redox sensitivity could serve as an excellent platform to achieve minimal toxicity and rapid intracellular drug release in tumor cells.


International Journal of Nanomedicine | 2016

MicroRNA-200c delivered by solid lipid nanoparticles enhances the effect of paclitaxel on breast cancer stem cell

Jingwen Liu; Tingting Meng; Ming Yuan; Lijuan Wen; Bolin Cheng; Na Liu; Xuan Huang; Yun Hong; Hong Yuan; Fuqiang Hu

Background One of the major obstacles in the treatment of breast cancer is breast cancer stem cells (BCSC) which are resistant to standard chemotherapeutic drugs. It has been proven that microRNA-200c (miR-200c) can restore sensitivity to microtubule-targeting chemotherapeutic drugs by reducing the expression of class III β-tubulin. In this study, combination therapy with miR-200c and paclitaxel (PTX) mediated by lipid nanoparticles was investigated as an alternative strategy against BCSC. Materials and methods A cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane was strategically selected to formulate solid lipid nanoparticles (SLN) for miR-200c delivery. Nanostructured lipid carriers (NLC) with 20 wt% oleic acid were prepared for PTX delivery. Mammospheres, which gained the characteristics of BCSC, were used as a cell model to evaluate the efficiency of combination therapy. Results The cationic SLN could condense anionic miRNA to form SLN/miRNA complexes via charge interactions and could protect miRNA from degradation by ribonuclease. SLN/miR-200c complexes achieved 11.6-fold expression of miR-200c after incubation for 24 hours, compared with that of Lipofectamine™ 2000/miR-200c complexes (*P<0.05). Intracellular drug release assay proved that miRNA can be released from SLN/miRNA complexes efficiently in 12 hours after cellular uptake. After BCSC were transfected with SLN/miR-200c, the expression of class III β-tubulin was effectively downregulated and the cellular cytotoxicity of PTX-loaded NLC (NLC/PTX) against BCSC was enhanced significantly (**P<0.01). Conclusion The results indicated that the cationic SLN could serve as a promising carrier for miRNA delivery. In addition, the combination therapy of miR-200c and PTX revealed a novel therapeutic strategy for the treatment of BCSC.


Oncotarget | 2016

Multi-cycle chemotherapy with the glycolipid-like polymeric micelles evade cancer stem cell enrichment in breast cancer therapy

Tingting Meng; Jingwen Liu; Lijuan Wen; Ming Yuan; Bolin Cheng; Yingwen Hu; Yun Zhu; Xuan Liu; Hong Yuan; Fuqiang Hu

Multi-cycle chemotherapy is commonly used in the clinic, while the phenomena of enrichment of cancer stem cells (CSCs) and enhanced multi-drug resistance (MDR) are commonly involved. This research was designed for evaluating this successive administration. Chitosan oligosaccharide-g-stearic acid (CSOSA) polymer was used as the drug delivery system (DDS) to perform tri-cycle chemotherapy on a new tumor model induced by mammosphere cells. In vitro, on CSCs enriched mammospheres model, the doxorubicin-loaded CSOSA (CSOSA/DOX) displayed an improved growth inhibition effect measured by acid phosphatase assay (APH). While in vivo, the CSOSA/DOX micelles blocked tumor progression and led to a marked decrease of CSCs proportion as well as MDR capacity. Whats more, the CSOSA/DOX helped decay the microenvironment and attenuate systemic side effects. We concluded that the CSOSA polymer could be a potential DDS for long-term multi-cycle chemotherapy in antitumor research.


Drug Delivery | 2017

VEGF-mediated tight junctions pathological fenestration enhances doxorubicin-loaded glycolipid-like nanoparticles traversing BBB for glioblastoma-targeting therapy

Lijuan Wen; Yanan Tan; Suhuan Dai; Yun Zhu; Tingting Meng; Xiqin Yang; Yupeng Liu; Xuan Liu; Hong Yuan; Fuqiang Hu

Abstract The existence of blood–brain barrier (BBB) greatly hindered the penetration and accumulation of chemotherapeutics into glioblastoma (GBM), accompany with poor therapeutic effects. The growth of GBM supervene the impairment of tight junctions (TJs); however, the pathogenesis of BBB breakdown in GBM is essentially poorly understood. This study found that vascular endothelial growth factor (VEGF) secreted by GBM cells plays an important role in increasing the permeability of BBB by disrupting endothelial tight junction proteins claudin-5 and thus gave doxorubicin (DOX)-loaded glycolipid-like nanoparticles (Ap-CSSA/DOX), an effective entrance to brain tumor region for GBM-targeting therapy. In addition, VEGF downregulates the expression of claudin-5 with a dose-dependent mode, and interfering with the VEGF/VEGFR pathway using its inhibitor axitinib could reduce the permeability of BBB and enhance the integrity of the barrier. Ap-CSSA/DOX nanoparticles showed high affinity to expressed low-density lipoprotein receptor-related proteins 1 (LRP1) in both BBB and GBM. And BBB pathological fenestration in GBM further exposed more LRP1 binding sites for Ap-CSSA/DOX nanoparticles targeting to brain tumor, resulting in a higher transmembrane transport ratio in vitro and a stronger brain tumor biodistribution in vivo, and finally realizing a considerable antitumor effect. Overall, taking advantage of BBB pathological features to design an appropriate nanodrug delivery system (NDDS) might provide new insights into other central nervous system (CNS) diseases treatment.


Drug Delivery | 2018

Simultaneous targeting therapy for lung metastasis and breast tumor by blocking the NF-κB signaling pathway using Celastrol-loaded micelles

Yue Zhao; Yanan Tan; Tingting Meng; Xuan Liu; Yun Zhu; Yun Hong; Xiqin Yang; Hong Yuan; Xuan Huang; Fuqiang Hu

Abstract Metastasis is one of the major obstacles for successful therapy of breast tumor. To inhibit the metastasis and growth of breast tumor simultaneously, a Celastrol (Cela) loaded glucolipid-like conjugates (CSOSA/Cela) with αvβ3-ligand Tetraiodothyroacetic acid (TET) modification (TET-CSOSA/Cela) were established to block nuclear factor-kappa B (NF-κB) signaling pathway. The distribution of TET-CSOSA was remarkably increased in lung metastasis and primary tumor of 4T1 tumor-bearing mice by means of αvβ3 receptor-mediated interaction. The results demonstrated that TET-CSOSA/Cela significantly suppressed Bcl-2 activation of lung metastatic cells and reduced MMP-9 expression of 4T1 breast tumor cells by blocking NF-κB. The inhibitory rates of TET-CSOSA/Cela against lung metastasis and primary tumor were raised to 90.72 and 81.15%, compared to those of Celastrol (72.15 and 46.40%), respectively. All results demonstrated the αvβ3 receptor targeted TET-CSOSA/Cela micelles exhibited great potential in treating lung metastasis and primary tumor simultaneously via blocking NF-κB signaling pathway.


International Journal of Nanomedicine | 2017

Effect of A-317491 delivered by glycolipid-like polymer micelles on endometriosis pain

Ming Yuan; Shaojie Ding; Tingting Meng; Binbin Lu; Shihong Shao; Xinmei Zhang; Hong Yuan; Fuqiang Hu

Endometriosis is a common gynecological disease with a lack of effective clinical treatment. Current therapy often results in endometriosis pain recurrence and serious side effects. P2X3 receptor, an adenosine triphosphate (ATP)-gated ion channel, might be implicated in endometriosis pain. In this study, chitosan oligosaccharide-g-stearic acid (CSOSA) polymer micelles-coated nanostructured lipid carriers (NLCs) were developed as a novel delivery system for A-317491, a selective P2X3 receptor antagonist for endometriosis pain therapy. A-317491-loaded NLC (NLC/A-317491) could be coated by CSOSA micelles to form CSOSA/NLC/A-317491 nanoparticles. Pheochromocytoma PC12 cells, which highly expressed P2X3 receptors, were used as a cell model, and the CSOSA/NLC/A-317491 partly blocked the Ca2+ influx induced by ATP stimulation. In nude mouse and rat endometriotic models, CSOSA/NLC could accumulate into endometriotic lesions after vein injection. In endometriotic rats, CSOSA/NLC/A-317491 reversed mechanical and heat hyperalgesia with long-term efficacy, which might be attributed to the massive CSOSA/NLC/A-317491 distribution in the endometriotic lesions. In conclusion, A-317491 delivered by CSOSA/NLC nanoparticles attenuated endometriosis pain in rats, and CSOSA/NLC/A-317491 could be used as an effective treatment strategy for P2X3-targeted therapy in endometriosis pain.


Colloids and Surfaces B: Biointerfaces | 2016

A spermine conjugated stearic acid-g-chitosan oligosaccharide polymer with different types of amino groups for efficient p53 gene therapy

Tingting Meng; Jie Wu; Han-Xi Yi; Jingwen Liu; Binbin Lu; Ming Yuan; Xuan Huang; Hong Yuan; Fuqiang Hu

The effect of various amino groups on gene vector is different. In order to combine their effect in one vector and finally promote the transfection efficiency, a biogenic tetra-amine spermine was introduced to modify the stearic acid-grafted chitosan oligosaccharide (CSOSA) polymer to build a new gene delivery system. The spermine linked CSOSA (SP-CSOSA) polymer consists two types of amino groups with 73.3%, 19.3% of all nitrogen atoms for primary and secondary amine groups, respectively. The SP modified CSOSA showed strong DNA condensation capability and obviously enhanced proton binding ability especially at about pH 5.0, which significantly promoted the escape of SP-CSOSA/pDNA complexes from endo-lysosoms. Moreover, the transfection efficiency at the N/P ratio of 10 could compete with that of Lipofectamine 2000 and PEI 25K, but with lower cytotoxicities. The therapeutic wild type p53 gene transfected by the SP-CSOSA polymer restored the function of aberrant p53 gene and induced obvious cell apoptosis and G1 phase arrest. We concluded that the new vector SP-CSOSA polymer proved to be a potential delivery system for gene therapy.


Molecular Pharmaceutics | 2018

Targeting High Expressed α5β1 Integrin in Liver Metastatic Lesions To Resist Metastasis of Colorectal Cancer by RPM Peptide-Modified Chitosan-Stearic Micelles

Shihong Shao; Yun Zhu; Tingting Meng; Yupeng Liu; Yun Hong; Ming Yuan; Hong Yuan; Fuqiang Hu

Liver metastasis is a leading death cause in colorectal cancer. The pathological differences between orthotopic tumors and metastatic lesions increased the therapeutic difficulty of metastasis. Herein, the α5β1 integrin receptor expression on metastatic cells was first measured, the result showed that metastatic cells expressed the α5β1 integrin higher than that of the original cells from orthotopic tumors. Afterward, RPM peptide-modified chitosan-stearic (RPM-CSOSA) was designed based on α5β1 integrin expression. The cytotoxicity and resistance to migration and the invasion ability of the targeting drug delivery system loading doxorubicin (DOX) and curcumin (CUR) were evaluated in vitro. The metastatic inhibition of the targeting drug delivery system was also investigated in HT29 liver metastatic models. The modified RPM peptide could increase the cellular internalization of CSOSA micelles in metastatic tumor cells and endothelial cells mediated by α5β1 integrin. The synergistic effects of RPM-CSOSA/DOX and RPM-CSOSA/CUR could obviously inhibit migratory and invasive abilities of HT29 cells and endothelial cells. Moreover, the RPM-CSOSA/DOX&RPM-CSOSA/CUR could obviously decrease the number of metastatic sites by 86.96%, while CSOSA/DOX&CSOSA/CUR decreased liver metastasis by 66.58% compared with that in the saline group. In conclusion, the RPM peptide-modified drug delivery system may provide insights into targeting the metastatic cells overexpressing the α5β1 integrin, and it has the potential to inhibit liver metastasis of colorectal cancer.


ACS Applied Materials & Interfaces | 2018

Immune Adjuvant Targeting Micelles Allow Efficient Dendritic Cell Migration to Lymph Nodes for Enhanced Cellular Immunity

Xiqin Yang; Keke Lian; Tingting Meng; Xuan Liu; Jing Miao; Yanan Tan; Hong Yuan; Fuqiang Hu

Cellular immunity is essential for the effectiveness of vaccines against cancer. After capture of vaccines, dendritic cells (DCs) have to migrate to lymph nodes via chemokine receptor type 7 (CCR7). Subsequently, DCs present cytosolic antigens via major histocompatibility complex class I (MHC I) molecules to induce cellular immunity. However, various vaccines fail to induce potent cellular immunity due to insufficient MHC I-restricted antigen presentation and limitations of immune adjuvants. Hence, we constructed novel immune adjuvant targeting micelles (M-COSA) to targeted codeliver antigen ovalbumin (OVA) and plasmid DNA encoding CCR7 (CCR7 pDNA) to the cytosol of DCs, thus promoting DC migration to lymph nodes to boost MHC I-restricted antigen presentation. M-COSA exhibited adjuvant activity and demonstrated more efficient DC cellular uptake compared with COSA. M-COSA/OVA/pDNA increased costimulatory molecule expression and cytokine secretion, resulting in DC activation and maturation. Moreover, antigens and pDNA, which were encapsulated in micelles, escaped from the endosome into the cytoplasm to achieve MHC I-restricted antigen presentation and increase CCR7 expression. The number of CD8+ T cells, which was positively correlated with tumor rejection, was notably increased and tumor growth was dramatically suppressed after vaccination with M-COSA/OVA/pDNA. In summary, M-COSA/OVA/pDNA micelles, which allow DC targeting and efficient DC migration to lymph nodes to enhance cellular immunity, exhibit effective tumor inhibition and lay the foundation for novel vaccine design.


International Journal of Pharmaceutics | 2017

A pH-responsive glycolipid-like nanocarrier for optimising the time-dependent distribution of free chemical drugs in focal cells

Bolin Cheng; Binbin Lu; Xuan Liu; Tingting Meng; Yanan Tan; Yun Zhu; Na Liu; Hong Yuan; Xuan Huang; Fuqiang Hu

Though Drug delivery systems have achieved accumulation at tumor sites via passive targeting and active targeting, the therapeutic effects are far from perfect. The unsatisfactory results are mainly due to limited drug release from the nanocarriers at tumor sites, while the pharmacological activities of the drug are attributed to the concentration of the free drug and the time maintained at the pharmacological targets. A pH-responsive chitosan based glycolipid-like nanocarrier (CSO-FBA-SA) was fabricated by conjugating stearyl alcohol (SA) to chitosan oligosaccharide (CSO) with the linkage of 4-formylbenzoic acid (FBA). FBA was a kind of aromatic aldehyde carbonyl compounds, which can form the benzoic-imine bond. In the presence of a Schiffs base structure, the carrier showed improved properties and could be quickly degraded in an acidic environment. In order to explore the process and mechanism of the nanocarriers in focal cells, the method for determining the intracellular concentration of released free doxorubicin was established, and the time-dependent change of the DOX-loaded micelles was revealed. The sight of drug release was also obtained with CLSM. The cytotoxicity of the CSO-FBA-SA/DOX against human breast cancer MCF-7 cells increased by 2.75-fold and 3.77-fold in comparison with the CSO-SA/DOX and DOX, respectively. Furthermore, the CSO-FBA-SA/DOX showed a 2.12-fold higher cytotoxicity against the MCF-7 cells than that treated against human ovarian cancer SKOV-3 cells with lower intracellular pH value, which indicated that the cellular inhibition positively correlated with the intracellular pH value. High tumor accumulation and fast drug release of the CSO-FBA-SA/DOX in tumor was responsible for the remarkable tumor growth inhibitory effect. Moreover, the CSO-FBA-SA/DOX could selectively respond to the acidic environment and release DOX in tumor only, which had relatively minimal cytotoxicity towards normal tissues. The results showed that this newly developed glycolipid-like nanocarrier could act as a potential vector for delivering the drug effectively with a low systemic toxicity.

Collaboration


Dive into the Tingting Meng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge