Tingyu Zhu
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tingyu Zhu.
Journal of Environmental Sciences-china | 2013
Wenqing Xu; Hairui Wang; Tingyu Zhu; Junyan Kuang; Pengfei Jing
Fly ash is a potential alternative to activated carbon for mercury adsorption. The effects of physicochemical properties on the mercury adsorption performance of three fly ash samples were investigated. X-ray fluorescence spectroscopy, X-ray photoelectron spectroscopy, and other methods were used to characterize the samples. Results indicate that mercury adsorption on fly ash is primarily physisorption and chemisorption. High specific surface areas and small pore diameters are beneficial to efficient mercury removal. Incompletely burned carbon is also an important factor for the improvement of mercury removal efficiency, in particular. The C-M bond, which is formed by the reaction of C and Ti, Si and other elements, may improve mercury oxidation. The samples modified with CuBr2, CuCl2 and FeCl3 showed excellent performance for Hg removal, because the chlorine in metal chlorides acts as an oxidant that promotes the conversion of elemental mercury (Hg0) into its oxidized form (Hg2+). Cu2+ and Fe3+ can also promote Hg0 oxidation as catalysts. HCl and O2 promote the adsorption of Hg by modified fly ash, whereas SO2 inhibits the Hg adsorption because of competitive adsorption for active sites. Fly ash samples modified with CuBr2, CuCl2 and FeCl3 are therefore promising materials for controlling mercury emissions.
Journal of Environmental Sciences-china | 2014
Xuliang Zhuang; Yuesi Wang; Hong He; Jianguo Liu; Xinming Wang; Tingyu Zhu; Maofa Ge; Ju Zhou; Guiqian Tang; Jinzhu Ma
The present article provides an overview of the chemical and physical features of haze in China, focusing on the relationship between haze and atmospheric fine particles, and the formation mechanism of haze. It also summarizes several of control technologies and strategies to mitigate the occurrence of haze. The development of instruments and the analysis of measurements of ambient particles and precursor concentrations have provided important information about haze formation. Indeed, the use of new instruments has greatly facilitated current haze research in China. Examples of insightful results include the relationship between fine particles and haze, the chemical compositions and sources of particles, the impacts of the aging process on haze formation, and the application of technologies that control the formation of haze. Based on these results, two relevant issues need to be addressed: understanding the relationship between haze and fine particles and understanding how to control PM2.5.
RSC Advances | 2015
Xiaolong Liu; Jian Wang; Junlin Zeng; Xue Wang; Tingyu Zhu
Porous Co3O4-MOF and Ru/Co3O4-MOF were prepared through a metal–organic frameworks (MOFs)-templated method, and the bulk materials resulted from precipitation method were prepared for comparison. All catalysts were tested for the catalytic oxidation of toluene in the temperature range of 150–300 °C, and Ru/Co3O4-MOF showed apparently higher catalytic activity and CO2 selectivity than other materials. The influence of water vapour on the catalytic oxidation of toluene was studied at 235 °C and 245 °C, and it could be found that the inhibition effect weakened with the increase of temperature. Additionally, the test of 12 h on-stream reaction was conducted to explore the stability of Ru/Co3O4-MOF.
Journal of Environmental Sciences-china | 2015
Ruihui Liu; Wenqing Xu; Li Tong; Tingyu Zhu
Experiments were conducted in a fixed-bed reactor containing a commercial V2O5/WO3/TiO2 catalyst to investigate mercury oxidation in the presence of HCl and O2. Mercury oxidation was improved significantly in the presence of HCl and O2, and the Hg(0) oxidation efficiencies decreased slowly as the temperature increased from 200 to 400°C. Upon pretreatment with HCl and O2 at 350°C, the catalyst demonstrated higher catalytic activity for Hg(0) oxidation. Notably, the effect of pretreatment with HCl alone was not obvious. For the catalyst treated with HCl and O2, better performance was observed with lower reaction temperatures. The results showed that both HCl and Hg(0) were first adsorbed onto the catalyst and then reacted with O2 following its adsorption, which indicates that the oxidation of Hg(0) over the commercial catalyst followed the Langmuir-Hinshelwood mechanism. Several characterization techniques, including Hg(0) temperature-programmed desorption (Hg-TPD) and X-ray photoelectron spectroscopy (XPS), were employed in this work. Hg-TPD profiles showed that weakly adsorbed mercury species were converted to strongly bound species in the presence of HCl and O2. XPS patterns indicated that new chemisorbed oxygen species were formed by the adsorption of HCl, which consequently facilitated the oxidation of mercury.
Journal of Environmental Sciences-china | 2015
Hao Qi; Wenqing Xu; Jian Wang; Li Tong; Tingyu Zhu
The elemental mercury removal abilities of three different zeolites (NaA, NaX, HZSM-5) impregnated with iron(III) chloride were studied on a lab-scale fixed-bed reactor. X-ray diffraction, nitrogen adsorption porosimetry, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and temperature programmed desorption (TPD) analyses were used to investigate the physicochemical properties. Results indicated that the pore structure and active chloride species on the surface of the samples are the key factors for physisorption and oxidation of Hg0, respectively. Relatively high surface area and micropore volume are beneficial to efficient mercury adsorption. The active Cl species generated on the surface of the samples were effective oxidants able to convert elemental mercury (Hg0) into oxidized mercury (Hg2+). The crystallization of NaCl due to the ion exchange effect during the impregnation of NaA and NaX reduced the number of active Cl species on the surface, and restricted the physisorption of Hg0. Therefore, the Hg0 removal efficiencies of the samples were inhibited. The TPD analysis revealed that the species of mercury on the surface of FeCl3-HZSM-5 was mainly in the form of mercuric chloride (HgCl2), while on FeCl3-NaX and FeCl3-NaA it was mainly mercuric oxide (HgO).
Catalysis Science & Technology | 2016
Xiaolong Liu; Junlin Zeng; Jian Wang; Wenbo Shi; Tingyu Zhu
Ruthenium-based catalysts Ru/TiO2, Ru/SiO2, Ru/γ-Al2O3, and Ru/ZrO2 were prepared and evaluated for CH3Br oxidation, and Ru/TiO2 showed better catalytic performance than the other samples. The product yields and selectivities were also studied. The thermal stability was examined with a 48 h on-stream test. The influence of water vapor on the catalytic oxidation of CH3Br was studied at 210 °C and 230 °C, and it was found that the inhibition effect weakened with the increase in temperature. Additionally, Ru/TiO2 was also employed in the catalytic oxidation of CO, benzene, methyl acetate, and multi-pollutants of simulated PTA offgas.
Journal of Environmental Sciences-china | 2015
Song Ding; Yuran Li; Tingyu Zhu; Yangyang Guo
To decrease the operating cost of flue gas purification technologies based on carbon-based materials, the adsorption and regeneration performance of low-price semi-coke and activated coke were compared for SO2 and NO removal in a simulated flue gas. The functional groups of the two adsorbents before and after regeneration were characterized by a Fourier transform infrared (FTIR) spectrometer, and were quantitatively assessed using temperature programmed desorption (TPD) coupled with FTIR and acid-base titration. The results show that semi-coke had higher adsorption capacity (16.2% for SO2 and 38.6% for NO) than activated coke because of its higher content of basic functional groups and lactones. After regeneration, the adsorption performance of semi-coke decreased because the number of active functional groups decreased and the micropores increased. Semi-coke had better regeneration performance than activated coke. Semi-coke had a larger SO2 recovery of 7.2% and smaller carbon consumption of 12% compared to activated coke. The semi-coke carbon-based adsorbent could be regenerated at lower temperatures to depress the carbon consumption, because the SO2 recovery was only reduced a small amount.
Journal of Environmental Sciences-china | 2015
Ruihui Liu; Wenqing Xu; Li Tong; Tingyu Zhu
Experiments were conducted in a fixed-bed reactor that contained a commercial catalyst, V2O5-WO3/TiO2, to investigate mercury oxidation in the presence of NO and O2. Mercury oxidation was improved by NO, and the efficiency was increased by simultaneously adding NO and O2. With NO and O2 pretreatment at 350°C, the catalyst exhibited higher catalytic activity for Hg(0) oxidation, whereas NO pretreatment did not exert a noticeable effect. Decreasing the reaction temperature boosted the performance of the catalyst treated with NO and O2. Although NO promoted Hg(0) oxidation at the very beginning, excessive NO counteracted this effect. The results show that NO plays different roles in Hg(0) oxidation; NO in the gaseous phase may directly react with the adsorbed Hg(0), but excessive NO hinders Hg(0) adsorption. The adsorbed NO was converted into active nitrogen species (e.g., NO2) with oxygen, which facilitated the adsorption and oxidation of Hg(0). Hg(0) was oxidized by NO mainly by the Eley-Rideal mechanism. The Hg(0) temperature-programmed desorption experiment showed that weakly adsorbed mercury species were converted to strongly bound ones in the presence of NO and O2.
Chemosphere | 2015
Xiaolong Liu; Jian Wang; Xue Wang; Tingyu Zhu
The pilot-scale plant on the simultaneous removal of PCDD/Fs and NOx from the flue gas of a municipal solid waste incinerator is presented. In order to research the influence of temperature on the catalytic decomposition of PCDD/Fs and the selective catalytic reduction of NOx, the experiments were performed at 220 °C, 260 °C, and 300 °C, and the congener profiles of PCDD/Fs for the samples collected at the inlet and outlet were illustrated. Noteworthy, the detailed congener distributions of PCDD/Fs in the gas-phase and particle-phase of the inlet and 300-outlet (decomposition temperature = 300 °C) samples are presented, and the removal efficiencies η(g-I-TEQ) and η(p-I-TEQ) reached to 94.94% and 99.67%, respectively. The effect of the SCR process on the removal of PCDD/Fs was also studied at a relatively low temperature of 220 °C. Additionally, the NOx emissions and the SCR efficiencies were investigated.
Journal of Environmental Sciences-china | 2016
Yuran Li; Yangyang Guo; Tingyu Zhu; Song Ding
Activated carbon (AC) is very effective for multi-pollutant removal; however, the complicated components in flue gas can influence each others adsorption. A series of adsorption experiments for multicomponents, including SO2, NO, chlorobenzene and H2O, on AC were performed in a fixed-bed reactor. For single-component adsorption, the adsorption amount for chlorobenzene was larger than for SO2 and NO on the AC. In the multi-component atmosphere, the adsorption amount decreased by 27.6% for chlorobenzene and decreased by 95.6% for NO, whereas it increased by a factor of two for SO2, demonstrating that a complex atmosphere is unfavorable for chlorobenzene adsorption and inhibits NO adsorption. In contrast, it is very beneficial for SO2 adsorption. The temperature-programmed desorption (TPD) results indicated that the binding strength between the gas adsorbates and the AC follows the order of SO2>chlorobenzene > NO. The adsorption amount is independent of the binding strength. The presence of H2O enhanced the component effects, while it weakened the binding force between the gas adsorbates and the AC. AC oxygen functional groups were analyzed using TPD and X-ray photoelectron spectroscopy (XPS) measurements. The results reveal the reason why the chlorobenzene adsorption is less affected by the presence of other components. Lactone groups partly transform into carbonyl and quinone groups after chlorobenzene desorption. The chlorobenzene adsorption increases the number of C=O groups, which explains the positive effect of chlorobenzene on SO2 adsorption and the strong NO adsorption.