Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tino Zaehle is active.

Publication


Featured researches published by Tino Zaehle.


PLOS ONE | 2010

Transcranial Alternating Current Stimulation Enhances Individual Alpha Activity in Human EEG

Tino Zaehle; Stefan Rach; Christoph Herrmann

Non-invasive electrical stimulation of the human cortex by means of transcranial direct current stimulation (tDCS) has been instrumental in a number of important discoveries in the field of human cortical function and has become a well-established method for evaluating brain function in healthy human participants. Recently, transcranial alternating current stimulation (tACS) has been introduced to directly modulate the ongoing rhythmic brain activity by the application of oscillatory currents on the human scalp. Until now the efficiency of tACS in modulating rhythmic brain activity has been indicated only by inference from perceptual and behavioural consequences of electrical stimulation. No direct electrophysiological evidence of tACS has been reported. We delivered tACS over the occipital cortex of 10 healthy participants to entrain the neuronal oscillatory activity in their individual alpha frequency range and compared results with those from a separate group of participants receiving sham stimulation. The tACS but not the sham stimulation elevated the endogenous alpha power in parieto-central electrodes of the electroencephalogram. Additionally, in a network of spiking neurons, we simulated how tACS can be affected even after the end of stimulation. The results show that spike-timing-dependent plasticity (STDP) selectively modulates synapses depending on the resonance frequencies of the neural circuits that they belong to. Thus, tACS influences STDP which in turn results in aftereffects upon neural activity. The present findings are the first direct electrophysiological evidence of an interaction of tACS and ongoing oscillatory activity in the human cortex. The data demonstrate the ability of tACS to specifically modulate oscillatory brain activity and show its potential both at fostering knowledge on the functional significance of brain oscillations and for therapeutic application.


NeuroImage | 2003

Functional anatomy of pitch memory—an fMRI study with sparse temporal sampling

Nadine Gaab; Christian Gaser; Tino Zaehle; Lutz Jäncke; Gottfried Schlaug

Auditory functional magnetic resonance imaging tasks are challenging since the MR scanner noise can interfere with the auditory stimulation. To avoid this interference a sparse temporal sampling method with a long repetition time (TR = 17 s) was used to explore the functional anatomy of pitch memory. Eighteen right-handed subjects listened to a sequence of sine-wave tones (4.6 s total duration) and were asked to make a decision (depending on a visual prompt) whether the last or second to last tone was the same or different as the first tone. An alternating button press condition served as a control. Sets of 24 axial slices were acquired with a variable delay time (between 0 and 6 s) between the end of the auditory stimulation and the MR acquisition. Individual imaging time points were combined into three clusters (0-2, 3-4, and 5-6 s after the end of the auditory stimulation) for the analysis. The analysis showed a dynamic activation pattern over time which involved the superior temporal gyrus, supramarginal gyrus, posterior dorsolateral frontal regions, superior parietal regions, and dorsolateral cerebellar regions bilaterally as well as the left inferior frontal gyrus. By regressing the performance score in the pitch memory task with task-related MR signal changes, the supramarginal gyrus (left>right) and the dorsolateral cerebellum (lobules V and VI, left>right) were significantly correlated with good task performance. The SMG and the dorsolateral cerebellum may play a critical role in short-term storage of pitch information and the continuous pitch discrimination necessary for performing this pitch memory task.


BMC Neuroscience | 2011

Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence

Tino Zaehle; Pascale Sandmann; Jeremy D. Thorne; Lutz Jäncke; Christoph Herrmann

BackgroundTranscranial direct current stimulation (tDCS) is a technique that can systematically modify behaviour by inducing changes in the underlying brain function. In order to better understand the neuromodulatory effect of tDCS, the present study examined the impact of tDCS on performance in a working memory (WM) task and its underlying neural activity. In two experimental sessions, participants performed a letter two-back WM task after sham and either anodal or cathodal tDCS over the left dorsolateral prefrontal cortex (DLPFC).ResultsResults showed that tDCS modulated WM performance by altering the underlying oscillatory brain activity in a polarity-specific way. We observed an increase in WM performance and amplified oscillatory power in the theta and alpha bands after anodal tDCS whereas cathodal tDCS interfered with WM performance and decreased oscillatory power in the theta and alpha bands under posterior electrode sides.ConclusionsThe present study demonstrates that tDCS can alter WM performance by modulating the underlying neural oscillations. This result can be considered an important step towards a better understanding of the mechanisms involved in tDCS-induced modulations of WM performance, which is of particular importance, given the proposal to use electrical brain stimulation for the therapeutic treatment of memory deficits in clinical settings.


Brain Research | 2007

The neural basis of the egocentric and allocentric spatial frame of reference

Tino Zaehle; Kirsten Jordan; Jürgen Baudewig; Peter Dechent; Fred W. Mast

The present study examines the functional and anatomical underpinnings of egocentric and allocentric coding of spatial coordinates. For this purpose, we set up a functional magnet resonance imaging experiment using verbal descriptions of spatial relations either with respect to the listener (egocentric) or without any body-centered relations (allocentric) to induce the two different spatial coding strategies. We aimed to identify and distinguish the neuroanatomical correlates of egocentric and allocentric spatial coding without any possible influences by visual stimulation. Results from sixteen participants show a general involvement of a bilateral fronto-parietal network associated with spatial information processing. Furthermore, the egocentric and allocentric conditions gave rise to activations in primary visual areas in both hemispheres. Moreover, data show separate neural circuits mediating different spatial coding strategies. While egocentric spatial coding mainly recruits the precuneus, allocentric coding of space activates a network comprising the right superior and inferior parietal lobe and the ventrolateral occipito-temporal cortex bilaterally. Furthermore, bilateral hippocampal involvement was observed during allocentric, but not during egocentric spatial processing. Our results demonstrate that the processing of egocentric spatial relations is mediated by medial superior-posterior areas, whereas allocentric spatial coding requires an additional involvement of right parietal cortex, the ventral visual stream and the hippocampal formation. These data suggest that a hierarchically organized processing system exists in which the egocentric spatial coding requires only a subsystem of the processing resources of the allocentric condition.


European Journal of Neuroscience | 2004

Evidence for rapid auditory perception as the foundation of speech processing: a sparse temporal sampling fMRI study

Tino Zaehle; Martin Meyer; Lutz Jäncke

We examined the processing of verbal and nonverbal auditory stimuli using an event‐related functional magnetic resonance imaging (fMRI) study to reveal the neural underpinnings of rapid temporal information processing and its relevance during speech perception. In the context of a clustered sparse‐temporal fMRI data collection eight right‐handed native German speakers performed: (i) an auditory gap detection task; and (ii) a CV syllable discrimination task. A tone perception task served as a nontemporal control condition. Here we aimed to research to what extent the left hemisphere preferentially processes linguistically relevant temporal information available in speech and nonspeech stimuli. Furthermore, we sought to find out as to whether a left hemispheres preference for linguistically relevant temporal information is specifically constrained to verbal utterances or if nonlinguistic temporal information may also activate these areas. We collected haemodynamic responses from three time points of acquisition (TPA) with varying temporal distance from stimulus onset to gain an insight on the time course of auditory processing. Results show exclusively left‐sided activations of primary and secondary auditory cortex associated with the perception of rapid temporal information. Furthermore, the data shows an overlap of activations evoked by nonspeech sounds and speech stimuli within primary and secondary auditory cortex of the left hemisphere. The present data clearly support the assumption of a shared neural network for rapid temporal information processing within the auditory domain for both speech and nonspeech signals situated in left superior temporal areas.


Frontiers in Psychiatry | 2012

Finite-Element Model Predicts Current Density Distribution for Clinical Applications of tDCS and tACS

Toralf Neuling; Sven Wagner; Carsten H. Wolters; Tino Zaehle; Christoph Herrmann

Transcranial direct current stimulation (tDCS) has been applied in numerous scientific studies over the past decade. However, the possibility to apply tDCS in therapy of neuropsychiatric disorders is still debated. While transcranial magnetic stimulation (TMS) has been approved for treatment of major depression in the United States by the Food and Drug Administration (FDA), tDCS is not as widely accepted. One of the criticisms against tDCS is the lack of spatial specificity. Focality is limited by the electrode size (35 cm2 are commonly used) and the bipolar arrangement. However, a current flow through the head directly from anode to cathode is an outdated view. Finite-element (FE) models have recently been used to predict the exact current flow during tDCS. These simulations have demonstrated that the current flow depends on tissue shape and conductivity. To face the challenge to predict the location, magnitude, and direction of the current flow induced by tDCS and transcranial alternating current stimulation (tACS), we used a refined realistic FE modeling approach. With respect to the literature on clinical tDCS and tACS, we analyzed two common setups for the location of the stimulation electrodes which target the frontal lobe and the occipital lobe, respectively. We compared lateral and medial electrode configuration with regard to their usability. We were able to demonstrate that the lateral configurations yielded more focused stimulation areas as well as higher current intensities in the target areas. The high resolution of our simulation allows one to combine the modeled current flow with the knowledge of neuronal orientation to predict the consequences of tDCS and tACS. Our results not only offer a basis for a deeper understanding of the stimulation sites currently in use for clinical applications but also offer a better interpretation of observed effects.


Journal of Cognitive Neuroscience | 2008

The neural correlate of speech rhythm as evidenced by metrical speech processing

Eveline Geiser; Tino Zaehle; Lutz Jäncke; Martin Meyer

The present study investigates the neural correlates of rhythm processing in speech perception. German pseudosentences spoken with an exaggerated (isochronous) or a conversational (nonisochronous) rhythm were compared in an auditory functional magnetic resonance imaging experiment. The subjects had to perform either a rhythm task (explicit rhythm processing) or a prosody task (implicit rhythm processing). The study revealed bilateral activation in the supplementary motor area (SMA), extending into the cingulate gyrus, and in the insulae, extending into the right basal ganglia (neostriatum), as well as activity in the right inferior frontal gyrus (IFG) related to the performance of the rhythm task. A direct contrast between isochronous and nonisochronous sentences revealed differences in lateralization of activation for isochronous processing as a function of the explicit and implicit tasks. Explicit processing revealed activation in the right posterior superior temporal gyrus (pSTG), the right supramarginal gyrus, and the right parietal operculum. Implicit processing showed activation in the left supramarginal gyrus, the left pSTG, and the left parietal operculum. The present results indicate a function of the SMA and the insula beyond motor timing and speak for a role of these brain areas in the perception of acoustically temporal intervals. Secondly, the data speak for a specific task-related function of the right IFG in the processing of accent patterns. Finally, the data sustain the assumption that the right secondary auditory cortex is involved in the explicit perception of auditory suprasegmental cues and, moreover, that activity in the right secondary auditory cortex can be modulated by top-down processing mechanisms.


Brain Research | 2008

Segmental processing in the human auditory dorsal stream

Tino Zaehle; Eveline Geiser; Kai Alter; Lutz Jäncke; Martin Meyer

In the present study we investigated the functional organization of sublexical auditory perception with specific respect to auditory spectro-temporal processing in speech and non-speech sounds. Participants discriminated verbal and nonverbal auditory stimuli according to either spectral or temporal acoustic features in the context of a sparse event-related functional magnetic resonance imaging (fMRI) study. Based on recent models of speech processing, we hypothesized that auditory segmental processing, as is required in the discrimination of speech and non-speech sound according to its temporal features, will lead to a specific involvement of a left-hemispheric dorsal processing network comprising the posterior portion of the inferior frontal cortex and the inferior parietal lobe. In agreement with our hypothesis results revealed significant responses in the posterior part of the inferior frontal gyrus and the parietal operculum of the left hemisphere when participants had to discriminate speech and non-speech stimuli based on subtle temporal acoustic features. In contrast, when participants had to discriminate speech and non-speech stimuli on the basis of changes in the frequency content, we observed bilateral activations along the middle temporal gyrus and superior temporal sulcus. The results of the present study demonstrate an involvement of the dorsal pathway in the segmental sublexical analysis of speech sounds as well as in the segmental acoustic analysis of non-speech sounds with analogous spectro-temporal characteristics.


Experimental Brain Research | 2011

Excitability changes induced in the human auditory cortex by transcranial direct current stimulation: direct electrophysiological evidence

Tino Zaehle; Manuela Beretta; Lutz Jäncke; Christoph Herrmann; Pascale Sandmann

Transcranial direct current stimulation (tDCS) can systematically modify behavior by inducing changes in the underlying brain function. Objective electrophysiological evidence for tDCS-induced excitability changes has been demonstrated for the visual and somatosensory cortex, while evidence for excitability changes in the auditory cortex is lacking. In the present study, we applied tDCS over the left temporal as well as the left temporo-parietal cortex and investigated tDCS-induced effects on auditory evoked potentials after anodal, cathodal, and sham stimulation. Results show that anodal and cathodal tDCS can modify auditory cortex reactivity. Moreover, auditory evoked potentials were differentially modulated as a function of site of stimulation. While anodal tDCS over the temporal cortex increased auditory P50 amplitudes, cathodal tDCS over the temporo-parietal cortex induced larger N1 amplitudes. The results directly demonstrate excitability changes in the auditory cortex induced by active tDCS over the temporal and temporo-parietal cortex and might contribute to the understanding of mechanisms involved in the successful treatment of auditory disorders like tinnitus via tDCS.


Neuroreport | 2005

Spectro-temporal processing during speech perception involves left posterior auditory cortex.

Martin Meyer; Tino Zaehle; Viktoria-Eleni Gountouna; Anthony Barron; Lutz Jäncke; Alice Turk

This functional magnetic resonance imaging study investigates the neural underpinnings of spectro-temporal integration during speech perception. Participants performed an auditory discrimination task on a set of sine-wave analogues that could be perceived as either nonspeech or speech. Behavioural results revealed a difference in the processing mode; spectro-temporal integration occurred during speech perception, but not when stimuli were perceived as nonspeech. In terms of neuroimaging, we observed an activation increase in the left posterior primary and secondary auditory cortex, namely Heschls gyrus and planum temporale encroaching onto the superior temporal sulcus, reflecting a shift from auditory to speech perception. This finding demonstrates that the left posterior superior temporal lobe is essential for spectro-temporal processing during speech perception.

Collaboration


Dive into the Tino Zaehle's collaboration.

Top Co-Authors

Avatar

Hans-Jochen Heinze

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Jürgen Voges

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Friedhelm C. Schmitt

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Hermann Hinrichs

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christoph Herrmann

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

R. J. Dolan

University College London

View shared research outputs
Top Co-Authors

Avatar

Katharina S. Rufener

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Max-Philipp Stenner

Otto-von-Guericke University Magdeburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge