Tiny Boumans
University of Antwerp
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tiny Boumans.
The Journal of Neuroscience | 2009
Colline Poirier; Tiny Boumans; Marleen Verhoye; Jacques Balthazart; Annemie Van der Linden
The songbird brain is able to discriminate between the birds own song and other conspecific songs. Determining where in the brain own- song selectivity emerges is of great importance because experience-dependent mechanisms are necessarily involved and because brain regions sensitive to self-generated vocalizations could mediate auditory feedback that is necessary for song learning and maintenance. Using functional MRI, here we show that this selectivity is present at the midbrain level. Surprisingly, the selectivity was found to be lateralized toward the right side, a finding reminiscent of the potential right lateralization of song production in zebra finches but also of own-face and own-voice recognition in human beings. These results indicate that a midbrain structure can process subtle information about the identity of a subject through experience-dependent mechanisms, challenging the classical perception of subcortical regions as primitive and nonplastic structures. They also open questions about the evolution of the cognitive skills and lateralization in vertebrates.
European Journal of Neuroscience | 2007
Tiny Boumans; Frédéric E. Theunissen; Colline Poirier; Annemie Van der Linden
Song perception in songbirds, just as music and speech perception in humans, requires processing the spectral and temporal structure found in the succession of song‐syllables. Using functional magnetic resonance imaging and synthetic songs that preserved exclusively either the temporal or the spectral structure of natural song, we investigated how vocalizations are processed in the avian forebrain. We found bilateral and equal activation of the primary auditory region, field L. The more ventral regions of field L showed depressed responses to the synthetic songs that lacked spectral structure. These ventral regions included subarea L3, medial‐ventral subarea L and potentially the secondary auditory region caudal medial nidopallium. In addition, field L as a whole showed unexpected increased responses to the temporally filtered songs and this increase was the largest in the dorsal regions. These dorsal regions included L1 and the dorsal subareas L and L2b. Therefore, the ventral region of field L appears to be more sensitive to the preservation of both spectral and temporal information in the context of song processing. We did not find any differences in responses to playback of the birds own song vs other familiar conspecific songs. We also investigated the effect of three commonly used anaesthetics on the blood oxygen level‐dependent response: medetomidine, urethane and isoflurane. The extent of the area activated and the stimulus selectivity depended on the type of anaesthetic. We discuss these results in the context of what is known about the locus of action of the anaesthetics, and reports of neural activity measured in electrophysiological experiments.
Trends in Neurosciences | 2009
Annemie Van der Linden; Vincent Van Meir; Tiny Boumans; Colline Poirier; Jacques Balthazart
Manganese-enhanced magnetic resonance imaging (ME-MRI), blood oxygen-level-dependent functional MRI (BOLD fMRI) and diffusion tensor imaging (DTI) can now be applied to animal species as small as mice or songbirds. These techniques confirmed previous findings but are also beginning to reveal new phenomena that were difficult or impossible to study previously. These imaging techniques will lead to major technical and conceptual advances in systems neurosciences. We illustrate these new developments with studies of the song control and auditory systems in songbirds, a spatially organized neuronal circuitry that mediates the acquisition, production and perception of complex learned vocalizations. This neural system is an outstanding model for studying vocal learning, brain steroid hormone action, brain plasticity and lateralization of brain function.
PLOS ONE | 2008
Tiny Boumans; Sharon M. H. Gobes; Colline Poirier; Frédéric E. Theunissen; Liesbeth Vandersmissen; Wouter Pintjens; Marleen Verhoye; Johan J. Bolhuis; Annemie Van der Linden
Background Male songbirds learn their songs from an adult tutor when they are young. A network of brain nuclei known as the ‘song system’ is the likely neural substrate for sensorimotor learning and production of song, but the neural networks involved in processing the auditory feedback signals necessary for song learning and maintenance remain unknown. Determining which regions show preferential responsiveness to the birds own song (BOS) is of great importance because neurons sensitive to self-generated vocalisations could mediate this auditory feedback process. Neurons in the song nuclei and in a secondary auditory area, the caudal medial mesopallium (CMM), show selective responses to the BOS. The aim of the present study is to investigate the emergence of BOS selectivity within the network of primary auditory sub-regions in the avian pallium. Methods and Findings Using blood oxygen level-dependent (BOLD) fMRI, we investigated neural responsiveness to natural and manipulated self-generated vocalisations and compared the selectivity for BOS and conspecific song in different sub-regions of the thalamo-recipient area Field L. Zebra finch males were exposed to conspecific song, BOS and to synthetic variations on BOS that differed in spectro-temporal and/or modulation phase structure. We found significant differences in the strength of BOLD responses between regions L2a, L2b and CMM, but no inter-stimuli differences within regions. In particular, we have shown that the overall signal strength to song and synthetic variations thereof was different within two sub-regions of Field L2: zone L2a was significantly more activated compared to the adjacent sub-region L2b. Conclusions Based on our results we suggest that unlike nuclei in the song system, sub-regions in the primary auditory pallium do not show selectivity for the BOS, but appear to show different levels of activity with exposure to any sound according to their place in the auditory processing stream.
PLOS ONE | 2011
Colline Poirier; Tiny Boumans; Michiel Vellema; Geert De Groof; Thierry Charlier; Marleen Verhoye; Annemie Van der Linden; Jacques Balthazart
Background Like human speech, birdsong is a learned behavior that supports species and individual recognition. Norepinephrine is a catecholamine suspected to play a role in song learning. The goal of this study was to investigate the role of norepinephrine in birds own song selectivity, a property thought to be important for auditory feedback processes required for song learning and maintenance. Methodology/Principal Findings Using functional magnetic resonance imaging, we show that injection of DSP-4, a specific noradrenergic toxin, unmasks own song selectivity in the dorsal part of NCM, a secondary auditory region. Conclusions/Significance The level of norepinephrine throughout the telencephalon is known to be high in alert birds and low in sleeping birds. Our results suggest that norepinephrine activity can be further decreased, giving rise to a strong own song selective signal in dorsal NCM. This latent own song selective signal, which is only revealed under conditions of very low noradrenergic activity, might play a role in the auditory feedback and/or the integration of this feedback with the motor circuitry for vocal learning and maintenance.
Physics in Medicine and Biology | 2008
Clémentine Vignal; Tiny Boumans; B Montcel; S Ramstein; Marleen Verhoye; J. Van Audekerke; Nicolas Mathevon; A. Van der Linden; Stéphane Mottin
Songbirds have been evolved into models of choice for the study of the cerebral underpinnings of vocal communication. Nevertheless, there is still a need for in vivo methods allowing the real-time monitoring of brain activity. Functional Magnetic Resonance Imaging (fMRI) has been applied in anesthetized intact songbirds. It relies on blood oxygen level-dependent (BOLD) contrast revealing hemodynamic changes. Non-invasive near-infrared spectroscopy (NIRS) is based on the weak absorption of near-infrared light by biological tissues. Time-resolved femtosecond white laser NIRS is a new probing method using real-time spectral measurements which give access to the local variation of absorbing chromophores such as hemoglobins. In this study, we test the efficiency of our time-resolved NIRS device in monitoring physiological hemodynamic brain responses in a songbird, the zebra finch (Taeniopygia guttata), using a hypercapnia event (7% inhaled CO(2)). The results are compared to those obtained using BOLD fMRI. The NIRS measurements clearly demonstrate that during hypercapnia the blood oxygen saturation level increases (increase in local concentration of oxyhemoglobin, decrease in deoxyhemoglobin concentration and total hemoglobin concentration). Our results provide the first correlation in songbirds of the variations in total hemoglobin and oxygen saturation level obtained from NIRS with local BOLD signal variations.
NMR in Biomedicine | 2010
Colline Poirier; Marleen Verhoye; Tiny Boumans; Annemie Van der Linden
The advent of high‐field MRI systems has allowed the implementation of blood oxygen level‐dependent functional MRI (BOLD fMRI) on small animals. An increased magnetic field improves the signal‐to‐noise ratio and thus allows an improvement in the spatial resolution. However, it also increases susceptibility artefacts in the commonly acquired gradient‐echo images. This problem is particularly prominent in songbird MRI because of the presence of numerous air cavities in the skull of birds. These T2*‐related image artefacts can be circumvented using spin‐echo BOLD fMRI. In this article, we describe the implementation of spin‐echo BOLD fMRI in zebra finches, a small songbird of 15–25 g, extensively studied in the behavioural neurosciences of birdsong. Because the main topics in this research domain are song perception and song learning, the protocol implemented used auditory stimuli. Despite the auditory nature of the stimuli and the weak contrast‐to‐noise ratio of spin‐echo BOLD fMRI compared with gradient‐echo BOLD fMRI, we succeeded in detecting statistically significant differences in BOLD responses triggered by different stimuli. This study shows that spin‐echo BOLD fMRI is a viable approach for the investigation of auditory processing in the whole brain of small songbirds. It can also be applied to study auditory processing in other small animals, as well as other sensory modalities. Copyright
NeuroImage | 2005
Vincent Van Meir; Tiny Boumans; Geert De Groof; Johan Van Audekerke; Alain Smolders; Paul Scheunders; Jan Sijbers; Marleen Verhoye; Jacques Balthazart; Annemie Van der Linden
Journal of Neurophysiology | 2008
Tiny Boumans; Clémentine Vignal; Alain Smolders; Jan Sijbers; Marleen Verhoye; Johan Van Audekerke; Nicolas Mathevon; Annemie Van der Linden
NMR in Biomedicine | 2006
Ilse Tindemans; Tiny Boumans; Marleen Verhoye; Annemie Van der Linden