Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tiphaine Bouriez-Jones is active.

Publication


Featured researches published by Tiphaine Bouriez-Jones.


Nature Immunology | 2009

Dock8 mutations cripple B cell immunological synapses, germinal centers and long-lived antibody production

Katrina L. Randall; Teresa Lambe; Andy L Johnson; Bebhinn Treanor; Edyta M. Kucharska; Heather Domaschenz; Belinda Whittle; Lina E. Tze; Anselm Enders; Tanya L. Crockford; Tiphaine Bouriez-Jones; Duncan Alston; Jason G. Cyster; Michael J. Lenardo; Fabienne Mackay; Elissa K. Deenick; Stuart G. Tangye; Tyani D. Chan; Tahra Camidge; Robert Brink; Carola G. Vinuesa; Facundo D. Batista; Richard J. Cornall; Christopher C. Goodnow

To identify genes and mechanisms involved in humoral immunity, we did a mouse genetic screen for mutations that do not affect the first wave of antibody to immunization but disrupt response maturation and persistence. The first two mutants identified had loss-of-function mutations in the gene encoding a previously obscure member of a family of Rho-Rac GTP-exchange factors, DOCK8. DOCK8-mutant B cells were unable to form marginal zone B cells or to persist in germinal centers and undergo affinity maturation. Dock8 mutations disrupted accumulation of the integrin ligand ICAM-1 in the B cell immunological synapse but did not alter other aspects of B cell antigen receptor signaling. Humoral immunodeficiency due to Dock8 mutation provides evidence that organization of the immunological synapse is critical for signaling the survival of B cell subsets required for long-lasting immunity.


Cell Stem Cell | 2013

Lymphomyeloid Contribution of an Immune-Restricted Progenitor Emerging Prior to Definitive Hematopoietic Stem Cells.

Charlotta Böiers; Joana Carrelha; Michael Lutteropp; Sidinh Luc; Joanna C.A. Green; Emanuele Azzoni; Petter S. Woll; Adam Mead; Anne Hultquist; Gemma Swiers; Elisa Gomez Perdiguero; Iain C Macaulay; Luca Melchiori; Tiago C. Luis; Shabnam Kharazi; Tiphaine Bouriez-Jones; Qiaolin Deng; Annica Pontén; Deborah Atkinson; Christina T. Jensen; Ewa Sitnicka; Frederic Geissmann; Isabelle Godin; Rickard Sandberg; Marella de Bruijn; Sten Eirik W. Jacobsen

In jawed vertebrates, development of an adaptive immune-system is essential for protection of the born organism against otherwise life-threatening pathogens. Myeloid cells of the innate immune system are formed early in development, whereas lymphopoiesis has been suggested to initiate much later, following emergence of definitive hematopoietic stem cells (HSCs). Herein, we demonstrate that the embryonic lymphoid commitment process initiates earlier than previously appreciated, prior to emergence of definitive HSCs, through establishment of a previously unrecognized entirely immune-restricted and lymphoid-primed progenitor. Notably, this immune-restricted progenitor appears to first emerge in the yolk sac and contributes physiologically to the establishment of lymphoid and some myeloid components of the immune-system, establishing the lymphomyeloid lineage restriction process as an early and physiologically important lineage-commitment step in mammalian hematopoiesis.


Nature Immunology | 2012

The earliest thymic T cell progenitors sustain B cell and myeloid lineage potential

Sidinh Luc; Tiago C. Luis; Hanane Boukarabila; Iain C Macaulay; Natalija Buza-Vidas; Tiphaine Bouriez-Jones; Michael Lutteropp; Petter S. Woll; Stephen Loughran; Adam Mead; Anne Hultquist; John Brown; Takuo Mizukami; S Matsuoka; Helen Ferry; Kristina Anderson; Deborah Atkinson; Shamit Soneji; Aniela Domanski; Alison Farley; Alejandra Sanjuan-Pla; Cintia Carella; Roger Patient; Marella de Bruijn; Tariq Enver; Claus Nerlov; C. Clare Blackburn; Isabelle Godin; Sten Eirik W. Jacobsen

The stepwise commitment from hematopoietic stem cells in the bone marrow to T lymphocyte–restricted progenitors in the thymus represents a paradigm for understanding the requirement for distinct extrinsic cues during different stages of lineage restriction from multipotent to lineage-restricted progenitors. However, the commitment stage at which progenitors migrate from the bone marrow to the thymus remains unclear. Here we provide functional and molecular evidence at the single-cell level that the earliest progenitors in the neonatal thymus had combined granulocyte-monocyte, T lymphocyte and B lymphocyte lineage potential but not megakaryocyte-erythroid lineage potential. These potentials were identical to those of candidate thymus-seeding progenitors in the bone marrow, which were closely related at the molecular level. Our findings establish the distinct lineage-restriction stage at which the T cell lineage–commitment process transits from the bone marrow to the remote thymus.


Cell Stem Cell | 2009

Cited2 Is an Essential Regulator of Adult Hematopoietic Stem Cells

Kamil R. Kranc; Hein Schepers; Neil P. Rodrigues; Simon D. Bamforth; Ellen Villadsen; Helen Ferry; Tiphaine Bouriez-Jones; Mikael Sigvardsson; Shoumo Bhattacharya; Sten Eirik W. Jacobsen; Tariq Enver

Summary The regulatory pathways necessary for the maintenance of adult hematopoietic stem cells (HSCs) remain poorly defined. By using loss-of-function approaches, we report a selective and cell-autonomous requirement for the p300/CBP-binding transcriptional coactivator Cited2 in adult HSC maintenance. Conditional deletion of Cited2 in the adult mouse results in loss of HSCs causing multilineage bone marrow failure and increased lethality. In contrast, conditional ablation of Cited2 after lineage specification in lymphoid and myeloid lineages has no impact on the maintenance of these lineages. Additional deletion of Ink4a/Arf (encoding p16Ink4a and p19Arf) or Trp53 (encoding p53, a downstream target of p19Arf) in a Cited2-deficient background restores HSC functionality and rescues mice from bone marrow failure. Furthermore, we show that the critical role of Cited2 in primitive hematopoietic cells is conserved in humans. Taken together, our studies provide genetic evidence that Cited2 selectively maintains adult HSC functions, at least in part, via Ink4a/Arf and Trp53.


European Journal of Immunology | 2011

DOCK8 is essential for T-cell survival and the maintenance of CD8+ T-cell memory.

Teresa Lambe; Greg Crawford; Andy L Johnson; Tanya L. Crockford; Tiphaine Bouriez-Jones; Aisling M. Smyth; Trung Pham; Qian Zhang; Alexandra F. Freeman; Jason G. Cyster; Helen C. Su; Richard J. Cornall

Deficiency in the guanine nucleotide exchange factor dedicator of cytokinesis 8 (DOCK8) causes a human immunodeficiency syndrome associated with recurrent sinopulmonary and viral infections. We have recently identified a DOCK8‐deficient mouse strain, carrying an ethylnitrosourea‐induced splice‐site mutation that shows a failure to mature a humoral immune response due to the loss of germinal centre B cells. In this study, we turned to T‐cell immunity to investigate further the human immunodeficiency syndrome and its association with decreased peripheral CD4+ and CD8+ T cells. Characterisation of the DOCK8‐deficient mouse revealed T‐cell lymphopenia, with increased T‐cell turnover and decreased survival. Egress of mature CD4+ thymocytes was reduced with increased migration of these cells to the chemokine CXCL12. However, despite the two‐fold reduction in peripheral naïve T cells, the DOCK8‐deficient mice generated a normal primary CD8+ immune response and were able to survive acute influenza virus infection. The limiting effect of DOCK8 was in the normal survival of CD8+ memory T cells after infection. These findings help to explain why DOCK8‐deficient patients are susceptible to recurrent infections and provide new insights into how T‐cell memory is sustained.


Blood | 2009

Identification of a Steap3 endosomal targeting motif essential for normal iron metabolism

Teresa Lambe; Robert J. Simpson; Sara Dawson; Tiphaine Bouriez-Jones; Tanya L. Crockford; Michelle Lepherd; Gladys O. Latunde-Dada; Hannah Robinson; Kishor B. Raja; Dean R. Campagna; Guadalupe Villarreal; J. Clive Ellory; Christopher C. Goodnow; Mark D. Fleming; Andrew T. McKie; Richard J. Cornall

Hereditary forms of iron-deficiency anemia, including animal models, have taught us much about the normal physiologic control of iron metabolism. However, the discovery of new informative mutants is limited by the natural mutation frequency. To address this limitation, we have developed a screen for heritable abnormalities of red blood cell morphology in mice with single-nucleotide changes induced by the chemical mutagen ethylnitrosourea (ENU). We now describe the first strain, fragile-red, with hypochromic microcytic anemia resulting from a Y228H substitution in the ferrireductase Steap3 (Steap3(Y288H)). Analysis of the Steap3(Y288H) mutant identifies a conserved motif required for targeting Steap3 to internal compartments and highlights how phenotypic screens linked to mutagenesis can identify new functional variants in erythropoiesis and ascribe function to previously unidentified motifs.


European Journal of Immunology | 2007

MyD88-dependent autoimmune disease in Lyn-deficient mice.

Karlee Silver; Tanya L. Crockford; Tiphaine Bouriez-Jones; Simon Milling; Teresa Lambe; Richard J. Cornall

Recent evidence suggests that systemic autoimmune disease depends on signals from TLR ligands, but little is known about how TLR‐dependent pathways lead to the loss of self tolerance in vivo. To address this, we have examined the role of TLR signaling in Lyn‐deficient mice, which develop an autoimmune disease similar to SLE. We found that absence of the TLR signaling adaptor molecule MyD88 suppresses plasma cell differentiation of switched and unswitched B cells, and prevents the generation of antinuclear IgG antibodies and glomerulonephritis. In mixed chimeras the increased IgM and IgG antibody secretion in Lyn‐deficient mice is at least partially due to B cell‐independent effects of Lyn. We now show that MyD88 deficiency blocks the expansion and activation of DC in which Lyn is also normally expressed, and prevents the hypersecretion of proinflammatory cytokines IL‐6 and IL‐12 by Lyn‐deficient DC. These findings further highlight the important role of TLR‐dependent signals in both lymphocyte activation and autoimmune pathogenesis.


Journal of Immunology | 2006

CD4 T cell-dependent autoimmunity against a melanocyte neoantigen induces spontaneous vitiligo and depends upon Fas-Fas ligand interactions.

Teresa Lambe; Janson C. H. Leung; Tiphaine Bouriez-Jones; Karlee Silver; Kimmo Makinen; Tanya L. Crockford; Helen Ferry; John V. Forrester; Richard J. Cornall

Better understanding of tolerance and autoimmunity toward melanocyte-specific Ags is needed to develop effective treatment for vitiligo and malignant melanoma; yet, a systematic assessment of these mechanisms has been hampered by the difficulty in tracking autoreactive T cells. To address this issue, we have generated transgenic mice that express hen egg lysozyme as a melanocyte-specific neoantigen. By crossing these animals to a hen egg lysozyme-specific CD4 TCR transgenic line we have been able to track autoreactive CD4+ T cells from their development in the thymus to their involvement in spontaneous autoimmune disease with striking similarity to human vitiligo vulgaris and Vogt-Koyanagi-Harada syndrome. Our findings show that CD4-dependent destruction of melanocytes is partially inhibited by blocking Fas-Fas ligand interactions and also highlights the importance of local control of autoimmunity, as vitiligo remains patchy and never proceeds to confluence even when Ag and autoreactive CD4+ T cells are abundant. Immune therapy to enhance or suppress melanocyte-specific T cells can be directed at a series of semiredundant pathways involving tolerance and cell death.


Journal of Immunology | 2007

Limited Peripheral T Cell Anergy Predisposes to Retinal Autoimmunity

Teresa Lambe; Janson C. H. Leung; Helen Ferry; Tiphaine Bouriez-Jones; Kimmo Makinen; Tanya L. Crockford; Hui R. Jiang; John M. Nickerson; Leena Peltonen; John V. Forrester; Richard J. Cornall

Autoimmune uveoretinitis accounts for at least 10% of worldwide blindness, yet it is unclear why tolerance to retinal Ags is so fragile and, particularly, to what extent this might be due to defects in peripheral tolerance. To address this issue, we generated double-transgenic mice expressing hen egg lysozyme, under the retinal interphotoreceptor retinoid-binding promoter, and a hen egg lysozyme-specific CD4+ TCR transgene. In this manner, we have tracked autoreactive CD4+ T cells from their development in the thymus to their involvement in uveoretinitis and compared tolerogenic mechanisms induced in a variety of organs to the same self-Ag. Our findings show that central tolerance to retinal and pancreatic Ags is qualitatively similar and equally dependent on the transcriptional regulator protein AIRE. However, the lack of Ag presentation in the eye-draining lymph nodes results in a failure to induce high levels of T cell anergy. Under these circumstances, despite considerable central deletion, low levels of retinal-specific autoreactive CD4+ T cells can induce severe autoimmune disease. The relative lack of anergy induction by retinal Ags, in contrast to the same Ag in other organs, helps to explain the unique susceptibility of the eye to spontaneous and experimentally induced autoimmune disease.


Blood | 2011

FLT3 expression initiates in fully multipotent mouse hematopoietic progenitor cells

Natalija Buza-Vidas; Petter S. Woll; Anne Hultquist; Michael Lutteropp; Tiphaine Bouriez-Jones; Helen Ferry; Sidinh Luc; Sten Eirik W. Jacobsen

Lymphoid-primed multipotent progenitors with down-regulated megakaryocyte-erythroid (MkE) potential are restricted to cells with high levels of cell-surface FLT3 expression, whereas HSCs and MkE progenitors lack detectable cell-surface FLT3. These findings are compatible with FLT3 cell-surface expression not being detectable in the fully multipotent stem/progenitor cell compartment in mice. If so, this process could be distinct from human hematopoiesis, in which FLT3 already is expressed in multipotent stem/progenitor cells. The expression pattern of Flt3 (mRNA) and FLT3 (protein) in multipotent progenitors is of considerable relevance for mouse models in which prognostically important Flt3 mutations are expressed under control of the endogenous mouse Flt3 promoter. Herein, we demonstrate that mouse Flt3 expression initiates in fully multipotent progenitors because in addition to lymphoid and granulocyte-monocyte progenitors, FLT3(-) Mk- and E-restricted downstream progenitors are also highly labeled when Flt3-Cre fate mapping is applied.

Collaboration


Dive into the Tiphaine Bouriez-Jones's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sten Eirik W. Jacobsen

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge