Tisheng Zhang
Wuhan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tisheng Zhang.
Sensors | 2015
Tisheng Zhang; Xiaoji Niu; Yalong Ban; Hongping Zhang; Chuang Shi; Jingnan Liu
A GNSS/INS deeply-coupled system can improve the satellite signals tracking performance by INS aiding tracking loops under dynamics. However, there was no literature available on the complete modeling of the INS branch in the INS-aided tracking loop, which caused the lack of a theoretical tool to guide the selections of inertial sensors, parameter optimization and quantitative analysis of INS-aided PLLs. This paper makes an effort on the INS branch in modeling and parameter optimization of phase-locked loops (PLLs) based on the scalar-based GNSS/INS deeply-coupled system. It establishes the transfer function between all known error sources and the PLL tracking error, which can be used to quantitatively evaluate the candidate inertial measurement unit (IMU) affecting the carrier phase tracking error. Based on that, a steady-state error model is proposed to design INS-aided PLLs and to analyze their tracking performance. Based on the modeling and error analysis, an integrated deeply-coupled hardware prototype is developed, with the optimization of the aiding information. Finally, the performance of the INS-aided PLLs designed based on the proposed steady-state error model is evaluated through the simulation and road tests of the hardware prototype.
Micromachines | 2015
Xiaoji Niu; Yalong Ban; Quan Zhang; Tisheng Zhang; Hongping Zhang; Jingnan Liu
In the Global Positioning System (GPS)/Inertial Navigation System (INS) deep integration system, the pure negative effect of the INS aiding is mainly the INS navigation error that is independent with the motion dynamics, which determine whether the INS aiding is worthy. This paper quantitatively assesses the negative effects of the inertial aiding information from different grades of INS by modeling the phase-locked loops (PLLs) based on the scalar-based GPS/INS deep integration system under stationary conditions. Results show that the largest maneuver-independent velocity error caused by the error sources of micro-electro-mechanical System (MEMS) inertial measurement unit (IMU) is less than 0.1 m/s, and less than 0.05 m/s for the case of tactical IMU during the typical GPS update interval (i.e., 1 s). The consequent carrier phase tracking error in the typical tracking loop is below 1.2 degrees for MEMS IMU case and 0.8 degrees for the tactical IMU case, which are much less than the receiver inherent errors. Conclusions can be reached that even the low-end MEMS IMU has the ability of aiding the receiver signal tracking. The tactical grade IMU can provide higher quality aiding information and has potential for the open loop tracking of GPS.
Micromachines | 2017
Tisheng Zhang; Yalong Ban; Xiaoji Niu; Wenfei Guo; Jingnan Liu
The phase locked loop (PLL) bandwidth suffers a dilemma on carrier phase accuracy and dynamic stress tolerance in stand-alone global navigation satellite systems (GNSS) receivers. With inertial navigation system (INS) aiding, PLLs only need to tolerate aiding information error, instead of dynamic stress. To obtain accurate carrier phase under high dynamics, INS-aided PLLs need be optimally designed to reduce the impact of aiding information error. Typical micro-electro-mechanical systems (MEMS) INS-aided PLLs are implemented and tested under high dynamics. Tests using simulation show there is a step change in the aiding information at each integer second, which deteriorates the carrier phase accuracy. An improved structure of INS-aided PLLs is proposed to eliminate the step change impact. Even when the jerk is 2000 m/s3, the tracking error of the proposed INS-aided PLL is no more than 3°. Finally, the performances of stand-alone PLLs and INS-aided PLLs are compared using field tests. When the antenna jerk is 300 m/s3, the carrier phase error from the stand-alone PLLs significantly increased, while the carrier phase error from the MEMS INS-aided PLLs almost remained the same. Therefore, the proposed INS-aided PLLs can suppress tracking errors caused by noise and dynamic stress simultaneously under high dynamics.
ieee/ion position, location and navigation symposium | 2014
Yalong Ban; Xiaoji Niu; Tisheng Zhang; Quan Zhang; Wenfei Guo; Hongping Zhang
In a deeply-coupled GPS/INS integrated system, the use of the inertial aiding information can improve the tracking loop performance and make the system more robust. To meet this requirement, the inertial aiding information should have sufficient accuracy in short-term (such as the sampling interval of GPS, e.g. 1sec). The MEMS (Micro-Electro Mechanical System) IMU (Inertial Measurement Unit) can be a promising candidate due to its small size and low cost. There should be no doubt that MEMS INS (Inertial Navigation System) can aid the GPS receiver tracking loop by eliminating the dominant part of the motion dynamic stress, considering that the INS errors induced by the receiver motion dynamics is much less than the motion dynamic itself, when the receiver manoeuvres. So the only concern the side effect caused by MEMS INS, which determine whether MEMS IMU is qualified for deep integration, is its navigation error independent with the motion dynamics (i.e. manoeuvre-independent error). This paper assesses this side effect of MEMS INS in terms of providing Doppler aiding data in to the GPS carrier tracking loop through a thorough error propagation analysis. The Laplace transform analysis is applied to the simplified INS error dynamic equations under stationary condition and find out the transfer relation between the error sources and the velocity estimation errors. Then the velocity error is converted to Doppler aiding error and substitute into the GPS tracking loop to analyze the corresponding carrier phase error. Results show that the largest velocity error caused by maneuver-independent errors is less than 0.1m/s during the typical GPS update interval (e.g. 1 sec), which meets the real road test results. The consequent carrier phase tracking error caused by the maneuver-independent error of MEMS INS is below 1.2 degree, which is much less than receiver inherent errors (e.g. the oscillator error and thermal noise). Conclusion can be reached that even the low-end MEMS IMUs have the ability of aiding the GPS receiver signal tracking although it induces some additional errors.
Micromachines | 2017
Tisheng Zhang; Hengrong Liu; Qijin Chen; Hongping Zhang; Xiaoji Niu
When strong earthquake occurs, global navigation satellite systems (GNSS) measurement errors increase significantly. Combined strategies of GNSS/accelerometer data can estimate better precision in displacement, but are of no help to carrier phase measurement. In this paper, strong-motion accelerometer-aided phase-locked loops (PLLs) are proposed to improve carrier phase accuracy during strong earthquakes. To design PLLs for earthquake monitoring, the amplitude-frequency characteristics of the strong earthquake signals are studied. Then, the measurement errors of PLLs before and after micro electro mechanical systems (MEMS) accelerometer aiding are analyzed based on error models. Furthermore, tests based on a hardware simulator and a shake table are carried out. Results show that, with MEMS accelerometer aiding, the carrier phase accuracy of the PLL decreases little under strong earthquakes, which is consistent with the models analysis.
Micromachines | 2017
Yalong Ban; Xiaoji Niu; Tisheng Zhang; Quan Zhang; Jingnan Liu
To meet the requirements of global navigation satellite systems (GNSS) precision applications in high dynamics, this paper describes a study on the carrier phase tracking technology of the GNSS/inertial navigation system (INS) deep integration system. The error propagation models of INS-aided carrier tracking loops are modeled in detail in high dynamics. Additionally, quantitative analysis of carrier phase tracking errors caused by INS error sources is carried out under the uniform high dynamic linear acceleration motion of 100 g. Results show that the major INS error sources, affecting the carrier phase tracking accuracy in high dynamics, include initial attitude errors, accelerometer scale factors, gyro noise and gyro g-sensitivity errors. The initial attitude errors are usually combined with the receiver acceleration to impact the tracking loop performance, which can easily cause the failure of carrier phase tracking. The main INS error factors vary with the vehicle motion direction and the relative position of the receiver and the satellites. The analysis results also indicate that the low-cost micro-electro mechanical system (MEMS) inertial measurement units (IMU) has the ability to maintain GNSS carrier phase tracking in high dynamics.
Gps Solutions | 2016
Tisheng Zhang; Hongping Zhang; Tao Lin; Kunlun Yan; Xiaoji Niu
Abstract The timing error between global navigation satellite system (GNSS) and inertial navigation system (INS) processes limits the integration performance in GNSS/INS integrated systems. In a deeply coupled system, this timing error affects not only the integrated navigation solution, but also the GNSS signal tracking. We propose a time-domain model of INS-aided second-order phase-locked loops (PLLs) in consideration of the INS aiding delay, and analyze the effect of INS aiding delay on the tracking errors in details. In addition, an integrated hardware deeply coupled system platform was developed to verify the impact of time delay on INS-aided PLLs. Simulation and field vehicles testing results demonstrate that the tracking error of the INS-aided PLL caused by aiding delay increases with the lengthening of the delay time, the compression of the bandwidth, and the increase in the acceleration. Testing results verify the proposed model.
Archive | 2013
Tisheng Zhang; Hongping Zhang; Yalong Ban; Xiaoji Niu
Compared with loosely coupled system and tightly coupled system, deeply coupled system could enhance the accuracy and the robustness of the receiver and the whole system. The real-time integrated deeply coupled system based on MEMS IMU can provide technical support for navigation service. This paper proposes an integrated MEMS IMU/GNSS deeply coupled system framework whose processing core is DSP + FPGA. In this paper the IMU aided tracking loop is modeled first, and then the error of the tracking loop is analyzed, the design of system’s real-time is optimized. Tests results show that the system can operate consecutively in real-time conditions, and the IMU auxiliary information latency is less than 0.5 ms; the error of the tracking loop is greatly reduced; the dynamic tests results preliminarily verify the feasibility of the real-time integrated deeply coupled system.
Sensors | 2018
Qijin Chen; Xiaoji Niu; Lili Zuo; Tisheng Zhang; Fuqin Xiao; Yi Liu; Jingnan Liu
Accurate measurement of the railway track geometry is a task of fundamental importance to ensure the track quality in both the construction phase and the regular maintenance stage. Conventional track geometry measuring trolleys (TGMTs) in combination with classical geodetic surveying apparatus such as total stations alone cannot meet the requirements of measurement accuracy and surveying efficiency at the same time. Accurate and fast track geometry surveying applications call for an innovative surveying method that can measure all or most of the track geometric parameters in short time without interrupting the railway traffic. We provide a novel solution to this problem by integrating an inertial navigation system (INS) with a geodetic surveying apparatus, and design a modular TGMT system based on aided INS, which can be configured according to different surveying tasks including precise adjustment of slab track, providing tamping measurements, measuring track deformation and irregularities, and determination of the track axis. TGMT based on aided INS can operate in mobile surveying mode to significantly improve the surveying efficiency. Key points in the design of the TGMT’s architecture and the data processing concept and workflow are introduced in details, which should benefit subsequent research and provide a reference for the implementation of this kind of TGMT. The surveying performance of proposed TGMT with different configurations is assessed in the track geometry surveying experiments and actual projects.
Archive | 2014
Tisheng Zhang; Hongping Zhang; Yalong Ban; Xiaoji Niu; Jingnan Liu
There is no systematic and complete theoretical model for signal tracking loop of the GNSS/INS deep integration. And the performance of the deeply-coupled system based on hardware prototype hasn’t been fully verified. These limitations block the progress and application of the GNSS/INS deeply-coupled technology. This paper studies the GNSS/INS deeply-coupled technology based on the scalar deep integration for GPS L1 receiver. It establishes the transfer functions between the error sources (including thermal noise, oscillator phase noise, inertial measurement unit (IMU) error, the delay of Doppler aiding information) and the tracking loop error of the deep integration. And then the steady state tracking model is proposed and analyzed. A hardware/software integrated GNSS/INS scalar deep-coupled prototype is successfully developed, and real-time optimizations are made in terms of the system operation and aiding information delay. The performance of the designed deeply coupled prototype is fully evaluated based on a GPS/IMU hardware simulator and outdoor tests. The result shows that the INS aiding could improve the steady states tracking performance by extending the integration time to 20 ms and by compressing the bandwidth to 3 Hz under normal dynamic conditions. The proposed error models, designed methods, and hardware prototype developed in this paper can be further applied to the key performance study of the GNSS/INS deeply coupled system, such as the sensitivity and anti-interference under dynamic conditions.