Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tiziana Bartolini is active.

Publication


Featured researches published by Tiziana Bartolini.


PLOS ONE | 2013

Collective Response of Zebrafish Shoals to a Free-Swimming Robotic Fish

Sachit Butail; Tiziana Bartolini; Maurizio Porfiri

In this work, we explore the feasibility of regulating the collective behavior of zebrafish with a free-swimming robotic fish. The visual cues elicited by the robot are inspired by salient features of attraction in zebrafish and include enhanced coloration, aspect ratio of a fertile female, and carangiform/subcarangiform locomotion. The robot is autonomously controlled with an online multi-target tracking system and swims in circular trajectories in the presence of groups of zebrafish. We investigate the collective response of zebrafish to changes in robot speed, achieved by varying its tail-beat frequency. Our results show that the speed of the robot is a determinant of group cohesion, quantified through zebrafish nearest-neighbor distance, which increases with the speed of the robot until it reaches . We also find that the presence of the robot causes a significant decrease in the group speed, which is not accompanied by an increase in the freezing response of the subjects. Findings of this study are expected to inform the design of experimental protocols that leverage the use of robots to study the zebrafish animal model.


Behavioural Brain Research | 2012

Zebrafish responds differentially to a robotic fish of varying aspect ratio, tail beat frequency, noise, and color

Nicole Abaid; Tiziana Bartolini; Simone Macrì; Maurizio Porfiri

In this paper, we present a bioinspired robotic fish designed to modulate the behavior of live fish. Specifically, we experimentally study the response of zebrafish to a robotic fish of varying size, color pattern, tail beat frequency, and acoustic signature in a canonical preference test. In this dichotomous experimental protocol, focal fish residing in the center focal compartment of a three-chambered test tank are confronted with pairs of competing stimuli, including various robots and the empty compartment, and their position is observed over time to measure preference. Fish behavior is classified into three main locomotory patterns to further dissect the complex behavior of zebrafish interacting with robots. A total of twelve experimental conditions is studied to isolate the effect of different elements of the robot design and provide general techniques for enhancing the attraction of zebrafish. We find that matching the aspect ratio and the visual appearance of the robotic fish with the target species increases the attraction experienced by zebrafish. We also find that the robots tail beat frequency does not play a dominant role on fish attraction, suggesting that this parameter could be optimized based on engineering needs rather than biological cues. On the other hand, we find that varying the aspect ratio and coloration of the robot strongly influences fish preference.


PLOS ONE | 2013

A Robotics-Based Behavioral Paradigm to Measure Anxiety-Related Responses in Zebrafish

Valentina Cianca; Tiziana Bartolini; Maurizio Porfiri; Simone Macrì

Zebrafish are gaining momentum as a laboratory animal species for the study of anxiety-related disorders in translational research, whereby they serve a fundamental complement to laboratory rodents. Several anxiety-related behavioral paradigms, which rest upon the presentation of live predatorial stimuli, may yield inconsistent results due to fatigue, habituation, or idiosyncratic responses exhibited by the stimulus itself. To overcome these limitations, we designed and manufactured a fully controllable robot inspired by a natural aquatic predator (Indian leaf fish, Nandus nandus) of zebrafish. We report that this robot elicits aversive antipredatorial reactions in a preference test and that data obtained therein correlate with data observed in traditional anxiety- and fear-related tests (light/dark preference and shelter-seeking). Finally, ethanol administration (0.25; 0.50; 1.00%) exerts anxiolytic effects, thus supporting the view that robotic stimuli can be used in the analysis of anxiety-related behaviors in zebrafish.


Zebrafish | 2015

Live Predators, Robots, and Computer-Animated Images Elicit Differential Avoidance Responses in Zebrafish

Fabrizio Ladu; Tiziana Bartolini; Sarah G. Panitz; Flavia Chiarotti; Sachit Butail; Simone Macrì; Maurizio Porfiri

Emotional disturbances constitute a major health issue affecting a considerable portion of the population in western countries. In this context, animal models offer a relevant tool to address the underlying biological determinants and to screen novel therapeutic strategies. While rodents have traditionally constituted the species of choice, zebrafish are now becoming a viable alternative. As zebrafish gain momentum in biomedical sciences, considerable efforts are being devoted to developing high-throughput behavioral tests. Here, we present a comparative study of zebrafish behavioral response to fear-evoking stimuli offered via three alternative methodologies. Specifically, in a binary-choice test, we exposed zebrafish to an allopatric predator Astronotus ocellatus, presented in the form of a live subject, a robotic replica, and a computer-animated image. The robots design and operation were inspired by the morphology and tail-beat motion of its live counterpart, thereby offering a consistent three-dimensional stimulus to focal fish. The computer-animated image was also designed after the live subject to replicate its appearance. We observed that differently from computer-animated images, both the live predator and its robotic replica elicited robust avoidance response in zebrafish. In addition, in response to the robot, zebrafish exhibited increased thrashing behavior, which is considered a valid indicator of fear. Finally, inter-individual response to a robotic stimulus is more consistent than that shown in response to live stimuli and animated images, thereby increasing experimental statistical power. Our study supports the view that robotic stimuli can constitute a promising experimental tool to elicit targeted behavioral responses in zebrafish.


Bioinspiration & Biomimetics | 2016

Zebrafish response to 3D printed shoals of conspecifics: the effect of body size.

Tiziana Bartolini; Violet Mwaffo; Ashleigh Showler; Simone Macrì; Sachit Butail; Maurizio Porfiri

Recent progress in three-dimensional (3D) printing technology has enabled rapid prototyping of complex models at a limited cost. Virtually every research laboratory has access to a 3D printer, which can assist in the design and implementation of hypothesis-driven studies on animal behavior. In this study, we explore the possibility of using 3D printing technology to understand the role of body size in the social behavior of the zebrafish model organism. In a dichotomous preference test, we study the behavioral response of zebrafish to shoals of 3D printed replicas of varying size. We systematically vary the size of each replica without altering the coloration, aspect ratio, and stripe patterns, which are all selected to closely mimic zebrafish morphophysiology. The replicas are actuated through a robotic manipulator, mimicking the natural motion of live subjects. Zebrafish preference is assessed by scoring the time spent in the vicinity of the shoal of replicas, and the information theoretic construct of transfer entropy is used to further elucidate the influence of the replicas on zebrafish motion. Our results demonstrate that zebrafish adjust their behavior in response to variations in the size of the replicas. Subjects exhibit an avoidance reaction for larger replicas, and they are attracted toward and influenced by smaller replicas. The approach presented in this study, integrating 3D printing technology, robotics, and information theory, is expected to significantly aid preclinical research on zebrafish behavior.


IEEE Transactions on Education | 2015

Bioinspiring an Interest in STEM

Jeffrey Laut; Tiziana Bartolini; Maurizio Porfiri

Attracting K-12 students to pursue careers in science, technology, engineering, and mathematics (STEM) is viewed as a critical element for benefiting both the economy and society. This paper describes an outreach program, conducted in a Brooklyn, NY, USA, public middle school, aimed at educating students in mechatronics, biology, and bioinspiration. The program is designed to foster student interest in STEM subjects, especially engineering-related concepts, by actively demonstrating their application in solving tangible real-world problems. It consists of a series of lectures and practical activities that culminate with a hands-on bioinspiration-based event at the New York Aquarium. Survey results show that students who participated in the program have a better understanding of the relationship between engineering and nature, demonstrate improved knowledge of select STEM topics, and are more interested in pursuing STEM careers.


Alcohol | 2015

Effect of acute ethanol administration on zebrafish tail-beat motion

Tiziana Bartolini; Violet Mwaffo; Sachit Butail; Maurizio Porfiri

Zebrafish is becoming a species of choice in neurobiological and behavioral studies of alcohol-related disorders. In these efforts, the activity of adult zebrafish is typically quantified using indirect activity measures that are either scored manually or identified automatically from the fish trajectory. The analysis of such activity measures has produced important insight into the effect of acute ethanol exposure on individual and social behavior of this vertebrate species. Here, we leverage a recently developed tracking algorithm that reconstructs fish body shape to investigate the effect of acute ethanol administration on zebrafish tail-beat motion in terms of amplitude and frequency. Our results demonstrate a significant effect of ethanol on the tail-beat amplitude as well as the tail-beat frequency, both of which were found to robustly decrease for high ethanol concentrations. Such a direct measurement of zebrafish motor functions is in agreement with evidence based on indirect activity measures, offering a complementary perspective in behavioral screening.


ASME 2013 Dynamic Systems and Control Conference, DSCC 2013 | 2013

Collective Response of Zebrafish to a Mobile Robotic Fish

Sachit Butail; Tiziana Bartolini; Maurizio Porfiri

We investigate the response of groups of zebrafish, a model social organism, to a free-swimming robotic fish. The robot has a body and tail section and moves forward by beating the tail. Steering control is achieved by offsetting the beating tail with respect to the body. The color pattern and shape of the robot are informed by visual cues known to be preferred by zebrafish. A real-time multi-target tracking algorithm uses position and velocity estimates to autonomously maneuver the robot in circular trajectories. Observables of collective behavior are computed from the fish trajectory data to measure cohesiveness, polarization, and speed of the zebrafish group in two different experimental conditions. We show that while fish are significantly less polarized in the presence of the robot with an accompanying change in average speed, there is no significant change in the degree of cohesion.Copyright


Proceedings of SPIE | 2015

Biologically inspired robots elicit a robust fear response in zebrafish

Fabrizio Ladu; Tiziana Bartolini; Sarah G. Panitz; Sachit Butail; Simone Macrì; Maurizio Porfiri

We investigate the behavioral response of zebrafish to three fear-evoking stimuli. In a binary choice test, zebrafish are exposed to a live allopatric predator, a biologically-inspired robot, and a computer-animated image of the live predator. A target tracking algorithm is developed to score zebrafish behavior. Unlike computer-animated images, the robotic and live predator elicit a robust avoidance response. Importantly, the robotic stimulus elicits more consistent inter-individual responses than the live predator. Results from this effort are expected to aid in hypothesis-driven studies on zebrafish fear response, by offering a valuable approach to maximize data-throughput and minimize animal subjects.


Environmental Biology of Fishes | 2015

Temperature influences sociality and activity of freshwater fish

Tiziana Bartolini; Sachit Butail; Maurizio Porfiri

Collaboration


Dive into the Tiziana Bartolini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sachit Butail

Indraprastha Institute of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Simone Macrì

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge