Tiziana Natalizi
Sapienza University of Rome
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tiziana Natalizi.
Molecules | 2011
Francesca Berlutti; Fabrizio Pantanella; Tiziana Natalizi; Alessandra Frioni; Rosalba Paesano; Antonella Polimeni; Piera Valenti
Lactoferrin, a multifunctional iron binding glycoprotein, plays an important role in immune regulation and defence mechanisms against bacteria, fungi and viruses. Lactoferrin’s iron withholding ability is related to inhibition of microbial growth as well as to modulation of motility, aggregation and biofilm formation of pathogenic bacteria. Independently of iron binding capability, lactoferrin interacts with microbial, viral and cell surfaces thus inhibiting microbial and viral adhesion and entry into host cells. Lactoferrin can be considered not only a primary defense factor against mucosal infections, but also a polyvalent regulator which interacts in viral infectious processes. Its antiviral activity, demonstrated against both enveloped and naked viruses, lies in the early phase of infection, thus preventing entry of virus in the host cell. This activity is exerted by binding to heparan sulphate glycosaminoglycan cell receptors, or viral particles or both. Despite the antiviral effect of lactoferrin, widely demonstrated in vitro studies, few clinical trials have been carried out and the related mechanism of action is still under debate. The nuclear localization of lactoferrin in different epithelial human cells suggests that lactoferrin exerts its antiviral effect not only in the early phase of surface interaction virus-cell, but also intracellularly. The capability of lactoferrin to exert a potent antiviral activity, through its binding to host cells and/or viral particles, and its nuclear localization strengthens the idea that lactoferrin is an important brick in the mucosal wall, effective against viral attacks and it could be usefully applied as novel strategy for treatment of viral infections.
Journal of Microbiological Methods | 2008
Fabrizio Pantanella; Piera Valenti; Alessandra Frioni; Tiziana Natalizi; Luana Coltella; Francesca Berlutti
The medical device-related infections are frequently a consequence of Staphylococcus biofilm, a lifestyle enhancing bacterial resistance to antibiotics. Antibiotic susceptibility tests are usually performed on planktonic forms of clinical isolates. Some methods have been developed to perform antibiotic susceptibility tests on biofilm. However, none of them counts bacterial inoculum. As antibiotic susceptibility is related to bacterial inoculum, the test results could be mistaken. Here, a new method, BioTimer Assay (BTA), able to count bacteria in biofilm without any manipulation of samples, is presented. Moreover, the BTA method is applied to analyze antibiotic susceptibility of six Staphylococcus strains in biofilm and to determine the number of viable bacteria in the presence of sub-inhibitory doses of four different antibiotics. To validate BTA, the new method was compared to reference methods both for counting and antibiotic susceptibility tests. A high agreement between BTA and reference methods is found on planktonic forms. Therefore, BTA was employed to count bacteria in biofilm and to analyze biofilm antibiotic susceptibility. Results confirm the high resistance to antibiotics of Staphylococcus biofilm. Moreover, BTA counts the number of viable bacteria in the presence of sub-inhibitory doses of antibiotics. The results show that the number of viable bacteria depends on sub-inhibitory doses, age of biofilm and type of antibiotic. In particular, differently to gentamicin and ampicillin, sub-inhibitory doses of ofloxacin and azithromycin reduce the number of viable bacteria at lower extent in young than in old biofilm. In conclusion, BTA is a reliable, rapid, easy-to-perform, and versatile method, and it can be considered a useful tool to analyze antibiotic susceptibility of Staphylococcus spp. in biofilm.
International Journal of Immunopathology and Pharmacology | 2011
Piera Valenti; Angela Catizone; Fabrizio Pantanella; Alessandra Frioni; Tiziana Natalizi; M. Tendini; Francesca Berlutti
In cystic fibrosis (CF) high iron concentration in airway secretion plays a pivotal role in bacterial multiplication and biofilm formation as well as in inflammatory response. Burkholderia cenocepacia, an opportunistic facultative pathogen responsible for chronic lung infections and cepacia syndrome, recurrently infects CF patients. Lactoferrin (Lf), an iron binding multifunctional glycoprotein synthesized by exocrine glands and neutrophils, has been found at higher concentration in the airway secretions of infected CF patients than in healthy subjects. Here the influence of milk derivative bovine lactoferrin (bLf), an emerging important regulator of iron and inflammatory homeostasis, on invasiveness of B. cenocepacia iron-modulated biofilm, as well as on inflammatory response by infected CF bronchial (IB3-1) cells, is reported, bLf did not significantly affect invasion efficacy by biofilm-forming B. cenocepacia clinical strains. Conversely, the addition of bLf to cell monolayers during infection significantly decreased the pro-inflammatory Interleukin (IL)-1β and increased the antiinflammatory IL-11 expression compared to that observed in cells infected in the absence of bLf. The bLf ability to modulate genes expressed following B. cenocepacia infection seems related to its localization to the nucleus of infected IB3-1 cells. These results provide evidence for a role of bLf in the protection of infected CF cells from inflammation-related damage, thus extending the therapeutic potential of this multifunctional natural protein.
Biometals | 2014
Alessandra Frioni; Maria Pia Conte; Antimo Cutone; Catia Longhi; Giovanni Musci; Maria Carmela Bonaccorsi di Patti; Tiziana Natalizi; Massimiliano Marazzato; Maria Stefania Lepanto; Patrizia Puddu; Rosalba Paesano; Piera Valenti; Francesca Berlutti
Conflicting data are reported on pro- or anti-inflammatory activity of bovine lactoferrin (bLf) in different cell models as phagocytes or epithelial cell lines infected by bacteria. Here we evaluated the bLf effect on epithelial models mimicking two human pathologies characterized by inflammation and infection with specific bacterial species. Primary bronchial epithelium from a cystic fibrosis (CF) patient and differentiated intestinal epithelial cells were infected with Pseudomonas aeruginosa LESB58 isolated from a CF patient and Adherent-Invasive Escherichia coli LF82 isolated from a Crohn’s disease patient. Surprisingly, bLf significantly reduced the intracellular bacterial survival, but differently modulated the inflammatory response. These data lead us to hypothesize that bLf differentially acts depending on the epithelial model and infecting pathogen. To verify this hypothesis, we explored whether bLf could modulate ferroportin (Fpn), the only known cellular iron exporter from cells, that, by lowering the intracellular iron level, determines a non permissive environment for intracellular pathogens. Here, for the first time, we describe the bLf ability to up-regulate Fpn protein in infected epithelial models. Our data suggest that the mechanism underlying the bLf modulating activity on inflammatory response in epithelial cells is complex and the bLf involvement in modulating cellular iron homeostasis should be taken into account.
International Journal of Immunopathology and Pharmacology | 2010
Francesca Berlutti; Angela Catizone; G. Ricci; Alessandra Frioni; Tiziana Natalizi; Piera Valenti; A. Polimeni
Streptococcus mutans and Streptococcus sobrinus, the principal etiologic agents of caries decay of teeth, are generally acquired in oral cavity at the moment of tooth eruption. However, as S. mutans has been detected in oral cavity of predentate children, the eruption of teeth seems not to be a necessary prerequisite, suggesting that this species may be not confined to dental plaque. Here, we evaluate the ability of S. mutans and S. sobrinus in planktonic and biofilm lifestyle to adhere, invade and survive within human gingival fibroblast (HGF-1) cells. Planktonic and biofilm streptococci adhered and invaded host cells to different extents, showing higher efficiencies of biofilm than planktonic counterparts. Moreover, planktonic and biofilm streptococci showed the same percentage of survival within host cells. Transmission electron and confocal microscopy observations confirmed intracellular localization of planktonic and biofilm bacteria. The adhesion, invasion and survival abilities within human oral cells may be considered S. mutans and S. sobrinus virulence mechanisms to colonize and persist in the oral cavity in the absence of tooth surface.
Interdisciplinary Perspectives on Infectious Diseases | 2011
Fabrizio Pantanella; Francesca Berlutti; Daniele Passeri; Daniela Sordi; Alessandra Frioni; Tiziana Natalizi; Maria Letizia Terranova; Marco Rossi; Piera Valenti
Biofilm is a common bacterial lifestyle, and it plays a crucial role in human health, causing biofilm-mediated infections. Recently, to counteract biofilm development, new nano-structured biomaterials have been proposed. However, data about the antibacterial properties of nano-structured surfaces are fragmentary and controversial, and, in particular, the susceptibility of nano-structured materials to colonization and biofilm formation by bacterial pathogens has not been yet thoroughly considered. Here, the ability of the pathogenic Streptococcus mutans and Pseudomonas aeruginosa to adhere and form biofilm on surfaces coated with single-wall carbon nanotubes (SWCNTs) was analyzed. Our results showed that the surfaces of SWCNTs-coated glass beads (SWCNTs-GBs) were colonized at the same extent of uncoated GBs both by S. mutans and P. aeruginosa. In conclusion, our results demonstrate that single wall SWCNTs-coated surfaces are not suitable to counteract bacterial adhesion and biofilm development.
Pathogens and Global Health | 2012
Rosalba Paesano; Tiziana Natalizi; Francesca Berlutti; Piera Valenti
Abstract Over 2 billion people in both developing as well as developed countries – over 30% of the world’s population – are anaemic. With the classical preconception that oral iron administration or the intake of foods rich in iron increase haemoglobin concentration and reduce the prevalence of anaemia, specific programs have been designed, but iron supplementations have been less effective than expected. Of note, this hazardous simplification on iron status neglects its distribution in the body. The correct balance of iron, defined iron homeostasis, involves a physiological ratio of iron between tissues/secretions and blood, thus avoiding its delocalization as iron accumulation in tissues/secretions and iron deficiency in blood. Changes in iron status can affect the inflammatory response in multiple ways, particularly in the context of infection, an idea that is worth remembering when considering the value of iron supplementation in areas of the world where infections are highly prevalent. The enhanced availability of free iron can increase susceptibility and severity of microbial and parasitic infections. The discovery of the hepcidin–ferroportin (Fpn) complex, which greatly clarified the enigmatic mechanism that supervises the iron homeostasis, should prompt to a critical review on iron supplementation, ineffective on the expression of the most important proteins of iron metabolism. Therefore, it is imperative to consider new safe and efficient therapeutic interventions to cure iron deficiency (ID) and ID anaemia (IDA) associated or not to the inflammation. In this respect, lactoferrin (Lf) is emerging as an important regulator of both iron and inflammatory homeostasis. Oral administration of Lf in subjects suffering of ID and IDA is safe and effective in significantly increasing haematological parameters and contemporary decreasing serum IL-6 levels, thus restoring iron localization through the direct or indirect modulation of hepcidin and ferroportin synthesis. Of note, the nuclear localization of Lf suggests that this molecule may be involved in the transcriptional regulation of some genes of host inflammatory response. We recently also reported that combined administration of oral and intravaginal Lf on ID and IDA pregnant women with preterm delivery threat, significantly increased haematological parameters, reduced IL-6 levels in both serum and cervicovaginal fluid, cervicovaginal prostaglandin PGF2α, and suppressed uterine contractility. Moreover, Lf combined administration blocked further the shortening of cervical length and the increase of foetal fibronectin, thus prolonging the length of pregnancy until the 37th–38th week of gestation. These new Lf functions effective in curing ID and IDA through the restoring of iron and inflammatory homeostasis and in preventing preterm delivery, could have a great relevance in developing countries, where ID and IDA and inflammation-associated anaemia represent the major risk factors of preterm delivery and maternal and neonatal death.
Ultramicroscopy | 2014
Daniele Passeri; C. Dong; Livia Angeloni; Fabrizio Pantanella; Tiziana Natalizi; Francesca Berlutti; Carlotta Marianecci; Francesco Ciccarello; M. Rossi
The need for accurate measurement of the thickness of soft thin films is continuously encouraging the development of techniques suitable for this purpose. We propose a method through which the thickness of the film is deduced from the quantitative measurement of the contrast in the phase images of the sample surface acquired by magnetic force microscopy, provided that the film is deposited on a periodically patterned magnetic substrate. The technique is demonstrated by means of magnetic substrates obtained from standard floppy disks. Colonies of Staphylococcus aureus adherent to such substrates were used to obtain soft layers with limited lateral (a few microns) and vertical (hundreds of nanometers) size. The technique is described and its specific merits, limitations and potentialities in terms of accuracy and measurable thickness range are discussed. These parameters depend on the characteristics of the sensing tip/cantilever as well as of the substrates, the latter in terms of spatial period and homogeneity of the magnetic domains. In particular, with the substrates used in this work we evaluated an uncertainty of about 10%, a limit of detection of 50-100 nm and an upper detection limit (maximum measurable thickness) of 1 μm, all obtained with standard lift height values (50-100 nm). Nonetheless, these parameters can be easily optimized by selecting/realizing substrates with suitable spacing and homogeneity of the magnetic domains. For example, the upper detection limit can be increased up to 25-50 μm while the limit of detection can be reduced to a few tens of nanometers or a few nanometers.
The Journal of Antibiotics | 2014
Francesca Berlutti; Alessandra Frioni; Tiziana Natalizi; Fabrizio Pantanella; Piera Valenti
Staphylococcus biofilm exhibits high antibiotic resistance and therapeutic doses of antibiotics are often sub-inhibitory. Whereas data are available on the effect of sub-inhibitory antibiotics on matrix formation, little is known on their influence on biofilm population. Here, using BioTimer Assay (BTA), a method developed to quantify biofilm population, the influence of sub-inhibitory gentamicin, ofloxacin and azithromycin on Staphylococcus aureus ATCC 6538 biofilm population in flow with respect to static condition was assessed. Antibiotics and flow condition increased biofilm population even if at different extent, depending on the antibiotic molecule. The greatest bacterial population was found in biofilm developed under flow condition in the presence of azithromycin. A significant increase in biofilm matrix was recorded for biofilm developed in the presence of antibiotics in flow with respect to static condition. The growth rates (GRs) of 24-h biofilm developed under the influence of antibiotics and flow condition were also evaluated using BTA and a specific mathematical model. Antibiotics and flow condition affected the GRs of 24-h biofilm even if at different extent. The lowest GR value was recorded for biofilm developed under flow condition in the presence of ofloxacin. Although further studies are needed, our data indicate that antibiotics and flow condition influenced biofilm development by increasing both bacterial population and matrix formation and affected the GRs of the developed biofilm. To the best of our knowledge, BTA is unique in allowing the calculation of the GRs of biofilm and it may be considered to be a useful study model to evaluate the activity of antibiofilm molecules.
Archive | 2011
Maria De Giusti; Francesca Berlutti; Fabrizio Pantanella; Lucia Marinelli; Alessandra Frioni; Tiziana Natalizi; Daniela Tufi; Piera Valenti
Remarkable interest for human health concerns the microbiological risk assessment due infections by bacteria possessing the ability to adhere to host cell or abiotic surfaces as well as to live in aggregated and biofilm lifestyle. Biofilm is multicellular bacterial community held together by a self-produced extracellular matrix in response to several factors. These factors may include recognition of specific or non-specific attachment sites on cell surfaces, electrostatic interactions on abiotic surfaces, nutritional cues, or in some cases, exposure to stress conditions in the environment as well as into the host. Biofilm lifestyle is comparatively more common than the planktonic one and it has been shown that biofilm plays a crucial role in human health (Brady et al., 2008; Bryers, 2008). As matter of fact, the eradication of bacterial biofilm by administration of antibiotics often fails due to the high drug resistance of bacteria in this lifestyle. Since 2008, European Centre for Disease Prevention and Control reports epidemiological data on the increasing of antimicrobial resistance constituting an important concern in public health hazard. For this reason, rapid assays to determine biofilm susceptibility to antibacterial drugs can significantly improve the outcome of infected patients by enabling a fast selection of efficient antibiotic treatments, thus decreasing the period and the related costs of hospitalization, as well as the incidence of morbidity and mortality ( Gfeller et al., 2005). Therefore, a fundamental prerequisite in studying, counteracting and eradicating biofilm is the possibility to quantify the actual number of bacteria involved. Bacterial counts have deep implications in microbiological diagnosis and therapeutic treatments (Bryers, 2008), in water and food quality analysis (Ramalho et al., 2001; Lee et al., 2007; Rueckert et al., 2005), in environmental applications and consumers’ safety. The standard method used to evaluate the number of bacteria, based on determination of Colony Forming Units (CFUs) (ISO method), can be considered fully appropriate only when bacteria are in planktonic lifestyle but it is unreliable to count bacteria in aggregated, adherent and biofilm lifestyle (Berlutti et al., 2003, Pantanella, 2008; Berlutti, 2008 a; Frioni,