Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tiziana Sacco is active.

Publication


Featured researches published by Tiziana Sacco.


Nature Genetics | 2010

Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28

Daniela Di Bella; Federico Lazzaro; Massimo Plumari; Giorgio Battaglia; Annalisa Pastore; Adele Finardi; Claudia Cagnoli; Filippo Tempia; Marina Frontali; Liana Veneziano; Tiziana Sacco; Enrica Boda; Alessandro Brussino; Florian Bonn; Barbara Castellotti; Silvia Baratta; Caterina Mariotti; Cinzia Gellera; Valentina Fracasso; Stefania Magri; Thomas Langer; Paolo Plevani; Stefano Di Donato; Marco Muzi-Falconi; Franco Taroni

Autosomal dominant spinocerebellar ataxias (SCAs) are genetically heterogeneous neurological disorders characterized by cerebellar dysfunction mostly due to Purkinje cell degeneration. Here we show that AFG3L2 mutations cause SCA type 28. Along with paraplegin, which causes recessive spastic paraplegia, AFG3L2 is a component of the conserved m-AAA metalloprotease complex involved in the maintenance of the mitochondrial proteome. We identified heterozygous missense mutations in five unrelated SCA families and found that AFG3L2 is highly and selectively expressed in human cerebellar Purkinje cells. m-AAA–deficient yeast cells expressing human mutated AFG3L2 homocomplex show respiratory deficiency, proteolytic impairment and deficiency of respiratory chain complex IV. Structure homology modeling indicates that the mutations may affect AFG3L2 substrate handling. This work identifies AFG3L2 as a novel cause of dominant neurodegenerative disease and indicates a previously unknown role for this component of the mitochondrial protein quality control machinery in protecting the human cerebellum against neurodegeneration.


Science | 2010

Role of Secondary Sensory Cortices in Emotional Memory Storage and Retrieval in Rats

Tiziana Sacco; Benedetto Sacchetti

The Storage of Emotions The neural mechanisms involved in emotional learning are well understood. However, how and where emotional memories are stored is still largely unclear. Sacco and Sacchetti (p. 649) now show that Pavlovian fear memories are stored in a modality-specific way in the secondary, but not primary, sensory cortices. The site of storage depended on whether the conditioned stimulus was visual, auditory, or olfactory. Only “old,” not new, memories were stored in this way, and lesions of secondary cortices, while disrupting the old memories, did not prevent the acquisition of new memories. An emotional memory gradually becomes widely distributed throughout the cortex. Visual, acoustic, and olfactory stimuli associated with a highly charged emotional situation take on the affective qualities of that situation. Where the emotional meaning of a given sensory experience is stored is a matter of debate. We found that excitotoxic lesions of auditory, visual, or olfactory secondary sensory cortices impaired remote, but not recent, fear memories in rats. Amnesia was modality-specific and not due to an interference with sensory or emotional processes. In these sites, memory persistence was dependent on ongoing protein kinase Mζ activity and was associated with an increased activity of layers II–IV, thus suggesting a synaptic strengthening of corticocortical connections. Lesions of the same areas left intact the memory of sensory stimuli not associated with any emotional charge. We propose that secondary sensory cortices support memory storage and retrieval of sensory stimuli that have acquired a behavioral salience with the experience.


Journal of Biological Chemistry | 2006

Resurgent Current and Voltage Sensor Trapping Enhanced Activation by a β-Scorpion Toxin Solely in Nav1.6 Channel SIGNIFICANCE IN MICE PURKINJE NEURONS

Emanuele Schiavon; Tiziana Sacco; Rita Restano Cassulini; Georgina B. Gurrola; Filippo Tempia; Lourival D. Possani; Enzo Wanke

Resurgent currents are functionally crucial in sustaining the high frequency firing of cerebellar Purkinje neurons expressing Nav1.6 channels. β-Scorpion toxins, such as CssIV, induce a left shift in the voltage-dependent activation of Nav1.2 channels by “trapping” the IIS4 voltage sensor segment. We found that the dangerous Cn2 β-scorpion peptide induces both the left shift voltage-dependent activation and a transient resurgent current only in human Nav1.6 channels (among 1.1-1.7), whereas CssIV did not induce the resurgent current. Cn2 also produced both actions in mouse Purkinje cells. These findings suggest that only distinct β-toxins produce resurgent currents. We suggest that the novel and unique selectivity of Cn2 could make it a model drug to replace deep brain stimulation of the subthalamic nucleus in patients with Parkinson disease.


European Journal of Neuroscience | 2007

Reversible inactivation of amygdala and cerebellum but not perirhinal cortex impairs reactivated fear memories

Benedetto Sacchetti; Tiziana Sacco; Piergiorgio Strata

The cerebellum, amygdala and perirhinal cortex are involved in fear learning but the different roles that these three structures play in aversive learning are not well defined. Here we show that in adult rats amygdala or cerebellar vermis blockade causes amnesia when performed immediately, but not 1 h, after the recall of fear memories. Thus, the cerebellum, as well as the amygdala, influences long‐term fear memories. These effects are long lasting, as they do not recover over time, even after a reminder shock administration. However, all of the subjects were able to form new fear memories in the absence of inactivation. By increasing the strength of conditioning, we observed that stronger fear memories are affected by the combined but not independent amygdala and cerebellar blockade. These results demonstrate that the cerebellum supports the memory processes even in the absence of a crucial site for emotions like the amygdala. Furthermore, they suggest that the amygdala is only one of the neural sites underlying long‐term fear memories. Finally, the inactivation of the perirhinal cortex never alters retrieved fear traces, showing important differences between the amygdala, cerebellum and perirhinal cortex in emotional memories.


The Journal of Physiology | 2002

A-Type potassium currents active at subthreshold potentials in mouse cerebellar purkinje cells

Tiziana Sacco; Filippo Tempia

Voltage‐dependent and calcium‐independent K+ currents were whole‐cell recorded from cerebellar Purkinje cells in slices. Tetraethylammonium (TEA, 4 mm) application isolated an A‐type K+ current (Ik(a)) with a peak amplitude, at +20 mV, of about one third of the total voltage‐dependent and calcium‐independent K+ current. The Ik(a) activated at about −60 mV, had a V0.5 of activation of −24.9 mV and a V0.5 of inactivation of −69.2 mV. The deactivation time constant at −70 mV was 3.4 ± 0.4 ms, while the activation time constant at +20 mV was 0.9 ± 0.2 ms. The inactivation kinetics was weakly voltage dependent, with two time constants; those at +20 mV were 19.3 ± 3.1 and 97.6 ± 9.8 ms. The recovery from inactivation had two time constants of 60.8 ms (78.4%) and 962.3 ms (21.6%). The Ik(a) was blocked by 4‐aminopyridine with an IC50 of 67.6 μM. Agitoxin‐2 (2 nm) blocked 17.4 ± 2.1% of the Ik(a). Flecainide completely blocked the Ik(a) with a biphasic effect with IC50 values of 4.4 and 183.2 μM. In current‐clamp recordings the duration of evoked action potentials was affected neither by agitoxin‐2 (2 nm) nor by flecainide (3 μM), but action potentials that were already broadened by TEA were further prolonged by 4‐aminopyridine (100 μM). The amplitude of the hyperpolarisation at the end of depolarising steps was reduced by all these blockers.


Molecular and Cellular Neuroscience | 2006

Properties and expression of Kv3 channels in cerebellar Purkinje cells

Tiziana Sacco; Annarita De Luca; Filippo Tempia

In cerebellar Purkinje cells, Kv3 potassium channels are indispensable for firing at high frequencies. In Purkinje cells from young mice (P4-P7), Kv3 currents, recorded in whole-cell in slices, activated at -30 mV, with rapid activation and deactivation kinetics, and they were partially blocked by blood depressing substance-I (BDS-I, 1 microM). At positive potentials, Kv3 currents were slowly but completely inactivating, while the recovery from inactivation was about eightfold slower, suggesting that a previous firing activity or a small change of the resting potential could in principle accumulate inactivated Kv3 channels, thereby finely tuning Kv3 current availability for subsequent action potentials. Single-cell RT-PCR analysis showed the expression by all Purkinje cells (n=10 for each subunit) of Kv3.1, Kv3.3 and Kv3.4 mRNA, while Kv3.2 was not expressed. These results add to the framework for interpreting the physiological function and the molecular determinants of Kv3 currents in cerebellar Purkinje cells.


Neuroscience | 2015

Auditory cortex involvement in emotional learning and memory.

Anna Grosso; Marco Cambiaghi; Giulia Concina; Tiziana Sacco; Benedetto Sacchetti

Emotional memories represent the core of human and animal life and drive future choices and behaviors. Early research involving brain lesion studies in animals lead to the idea that the auditory cortex participates in emotional learning by processing the sensory features of auditory stimuli paired with emotional consequences and by transmitting this information to the amygdala. Nevertheless, electrophysiological and imaging studies revealed that, following emotional experiences, the auditory cortex undergoes learning-induced changes that are highly specific, associative and long lasting. These studies suggested that the role played by the auditory cortex goes beyond stimulus elaboration and transmission. Here, we discuss three major perspectives created by these data. In particular, we analyze the possible roles of the auditory cortex in emotional learning, we examine the recruitment of the auditory cortex during early and late memory trace encoding, and finally we consider the functional interplay between the auditory cortex and subcortical nuclei, such as the amygdala, that process affective information. We conclude that, starting from the early phase of memory encoding, the auditory cortex has a more prominent role in emotional learning, through its connections with subcortical nuclei, than is typically acknowledged.


PLOS ONE | 2011

Basolateral Amygdala Inactivation Impairs Learning-Induced Long-Term Potentiation in the Cerebellar Cortex

Lan Zhu; Tiziana Sacco; Piergiorgio Strata; Benedetto Sacchetti

Learning to fear dangerous situations requires the participation of basolateral amygdala (BLA). In the present study, we provide evidence that BLA is necessary for the synaptic strengthening occurring during memory formation in the cerebellum in rats. In the cerebellar vermis the parallel fibers (PF) to Purkinje cell (PC) synapse is potentiated one day following fear learning. Pretraining BLA inactivation impaired such a learning-induced long-term potentiation (LTP). Similarly, cerebellar LTP is affected when BLA is blocked shortly, but not 6 h, after training. The latter result shows that the effects of BLA inactivation on cerebellar plasticity, when present, are specifically related to memory processes and not due to an interference with sensory or motor functions. These data indicate that fear memory induces cerebellar LTP provided that a heterosynaptic input coming from BLA sets the proper local conditions. Therefore, in the cerebellum, learning-induced plasticity is a heterosynaptic phenomenon that requires inputs from other regions. Studies employing the electrically-induced LTP in order to clarify the cellular mechanisms of memory should therefore take into account the inputs arriving from other brain sites, considering them as integrative units. Based on previous and the present findings, we proposed that BLA enables learning-related plasticity to be formed in the cerebellum in order to respond appropriately to new stimuli or situations.


Nature Communications | 2015

The higher order auditory cortex is involved in the assignment of affective value to sensory stimuli

Anna Grosso; Marco Cambiaghi; Annamaria Renna; Luisella Milano; Giorgio Roberto Merlo; Tiziana Sacco; Benedetto Sacchetti

The sensory cortex participates in emotional memory but its role is poorly understood. Here we show that inactivation of the higher order auditory cortex Te2 in rats during early memory consolidation impairs remote first- and second-order fear memories but not the association between two neutral cues. Furthermore, Te2 inactivation prevents changes in the valence of such information. Following the presentation of two auditory cues previously paired with either pleasant or painful stimuli, a large percentage of cells responds to both experiences but also a small fraction of neurons responds exclusively to one of them. The latter type of neurons signals the valence rather than the salience or the motor responses associated with the stimuli, and reflects selective associative processes. Pharmacogenetic silencing of memory-activated neurons causes amnesia. Thus, Te2 represents a crucial node for the assignment of the affective value to sensory stimuli and for the storage of such information.


BMC Neuroscience | 2010

Mouse brain expression patterns of Spg7, Afg3l1, and Afg3l2 transcripts, encoding for the mitochondrial m-AAA protease

Tiziana Sacco; Enrica Boda; Eriola Hoxha; Riccardo Pizzo; Claudia Cagnoli; Filippo Tempia

BackgroundThe m-AAA (A TPases A ssociated with a variety of cellular A ctivities) is an evolutionary conserved metalloprotease complex located in the internal mitochondrial membrane. In the mouse, it is a hetero-oligomer variably formed by the Spg7, Afg3l1, and Afg3l2 encoded proteins, or a homo-oligomer formed by either Afg3l1 or Afg3l2. In humans, AFG3L2 and SPG7 genes are conserved, whereas AFG3L1 became a pseudogene. Both AFG3L2 and SPG7 are involved in a neurodegenerative disease, namely the autosomal dominant spinocerebellar ataxia SCA28 and a recessive form of spastic paraplegia, respectively.ResultsUsing quantitative RT-PCR, we measured the expression levels of Spg7, Afg3l1, and Afg3l2 in the mouse brain. In all regions Afg3l2 is the most abundant transcript, followed by Spg7, and Afg3l1, with a ratio of approximately 5:3:1 in whole-brain mRNA. Using in-situ hybridization, we showed that Spg7, Afg3l1 and Afg3l2 have a similar cellular pattern of expression, with high levels in mitral cells, Purkinje cells, deep cerebellar nuclei cells, neocortical and hippocampal pyramidal neurons, and brainstem motor neurons. However, in some neuronal types, differences in the level of expression of these genes were present, suggesting distinct degrees of contribution of their proteins.ConclusionsNeurons involved in SCA28 and hereditary spastic paraplegia display high levels of expression, but similar or even higher expression is also present in other types of neurons, not involved in these diseases, suggesting that the selective cell sensitivity should be attributed to other, still unknown, mechanisms.

Collaboration


Dive into the Tiziana Sacco's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge