Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tiziana Spatola is active.

Publication


Featured researches published by Tiziana Spatola.


Journal of The American Society of Nephrology | 2005

Statins Prevent Oxidized LDL-Induced Injury of Glomerular Podocytes by Activating the Phosphatidylinositol 3-Kinase/AKT-Signaling Pathway

Benedetta Bussolati; Maria Chiara Deregibus; Valentina Fonsato; Sophie Doublier; Tiziana Spatola; Simone Procida; Francesco Di Carlo; Giovanni Camussi

The injury of podocytes is associated with alterations of the glomerular size-selective barrier to proteins. In this study, oxidized LDL (oxLDL) but not native LDL induced apoptosis in human cultured podocytes and reduced Akt activity and P-Akt/Akt ratio. Moreover, oxLDL-induced redistribution and loss of nephrin, an adhesion molecule specific for the glomerular slit diaphragm. Nephrin reduction was preceded by inhibition of nephrin tyrosine phosphorylation and of its association with p85 phosphatidylinositol 3-kinase (PI3K). Moreover, three different statins, mevastatin, pravastatin, and simvastatin, inhibited in a dose-dependent manner apoptosis and loss of nephrin induced by oxLDL by stimulating Akt activity. In addition, simvastatin significantly increased the expression of nephrin protein and mRNA by podocytes. The protective effects of statins were blocked by treatment of podocytes with two unrelated pharmacologic inhibitors of PI3K, LY294002 and wortmannin, suggesting a role for PI3K, and by mevalonate, indicating dependency on HMG-CoA reductase activity. Statins directly stimulated Akt phosphorylation ad activity. Finally, oxLDL induced a retraction of cultured podocytes and an increase in the albumin diffusion across their monolayer that was inhibited by treatment with statins. In conclusion, statins reduced the oxLDL-induced apoptosis and loss of nephrin in glomerular podocytes. The statin-induced Akt activation may protect from the loss of nephrin by an inhibition of its redistribution and shedding and by a stimulation of its synthesis. These data provide a rationale for the anti-proteinuric effect of statins.


AIDS | 2007

HIV-1 Tat reduces nephrin in human podocytes : a potential mechanism for enhanced glomerular permeability in HIV-associated nephropathy

Sophie Doublier; Cristina Zennaro; Tiziana Spatola; Enrico Lupia; Antonella Bottelli; Maria Chiara Deregibus; Michele Carraro; Pier Giulio Conaldi; Giovanni Camussi

Objective:To determine whether HIV-1 Tat may directly alter glomerular permeability in HIV-associated nephropathy (HIVAN). Design:Heavy proteinuria is a hallmark of HIVAN. The slit diaphragm is the ultimate glomerular filtration barrier critical for maintaining the efficiency of the ultrafiltration unit of the kidney. In this study, we evaluated the direct effect of Tat protein on the permeability of isolated glomeruli and on the expression of nephrin, the main slit diaphragm component, by human cultured podocytes. Methods:Permeability was studied by measuring the permeability to albumin in isolated rat glomeruli. We also evaluated the expression of nephrin in human cultured podocytes by using immunofluorescence and Western blot. Results:We found that Tat increased albumin permeability in isolated glomeruli, and rapidly induced the redistribution and loss of nephrin in cultured podocytes. Pretreatment of glomeruli and podocytes with blocking antibodies showed that Tat reduced nephrin expression by engaging vascular endothelial growth factor receptors types 2 and 3 and the integrin αvβ3. Pre-incubation of podocytes with two platelet-activating factor (PAF) receptor antagonists prevented the loss and redistribution of nephrin induced by Tat, suggesting that PAF is an intracellular mediator of Tat action. Tat induced a rapid PAF synthesis by podocytes. When podocytes transfected to overexpress PAF-acetylhydrolase, the main catabolic enzyme of PAF, were stimulated with Tat, the redistribution and loss of nephrin was abrogated. Conclusion:The present results define a mechanism by which Tat may reduce nephrin expression in podocytes, thus increasing glomerular permeability. This provides new insights in the understanding of HIVAN pathogenesis.


Atherosclerosis | 2010

Thrombopoietin contributes to enhanced platelet activation in cigarette smokers.

Enrico Lupia; Ornella Bosco; Alberto Goffi; Cesare Poletto; Stefania Locatelli; Tiziana Spatola; Alessandra Cuccurullo; Giuseppe Montrucchio

OBJECTIVES Thrombopoietin (TPO) is a humoral growth factor that primes platelet activation in response to several agonists. We recently showed that TPO enhances platelet activation in unstable angina and sepsis. Aim of this study was to investigate the role of TPO in platelet function abnormalities described in cigarette smokers. METHODS In a case-control study we enrolled 20 healthy cigarette smokers and 20 nonsmokers, and measured TPO and C-reactive protein (CRP), as well as platelet-leukocyte binding and P-selectin expression. In vitro we evaluated the priming activity of smoker or control plasma on platelet activation, and the role of TPO in this effect. We then studied the effects of acute smoking and smoking cessation on TPO levels and platelet activation indices. RESULTS Chronic cigarette smokers had higher circulating TPO levels than nonsmoking controls, as well as increased platelet-leukocyte binding, P-selectin expression, and CRP levels. Serum cotinine concentrations correlated with TPO concentrations, platelet-monocyte aggregates and P-selectin expression. In addition, TPO levels significantly correlated with ex vivo platelet-monocyte aggregation and P-selectin expression. In vitro, the plasma from cigarette smokers, but not from nonsmoking controls, primed platelet-monocyte binding, which was reduced when an inhibitor of TPO was used. We also found that acute smoking slightly increased TPO levels, but did not affect platelet-leukocyte binding, whereas smoking cessation induced a significant decrease in both circulating TPO and platelet-leukocyte aggregation. CONCLUSION Elevated TPO contributes to enhance platelet activation and platelet-monocyte cross-talk in cigarette smokers.


Journal of Thrombosis and Haemostasis | 2009

Elevated thrombopoietin in plasma of burned patients without and with sepsis enhances platelet activation.

Enrico Lupia; Ornella Bosco; F. Mariano; A. E. Dondi; Alberto Goffi; Tiziana Spatola; Alessandra Cuccurullo; P. Tizzani; Gabriele Brondino; M. Stella; Giuseppe Montrucchio

Summary.  Background: Thrombopoietin (TPO) is a humoral growth factor that does not induce platelet aggregation per se, but enhances platelet activation in response to several agonists. Circulating levels of TPO are increased in patients with sepsis and are mainly related to sepsis severity. Objectives: To investigate the potential contribution of elevated TPO levels in platelet activation during burn injury complicated or not by sepsis. Methods: We studied 22 burned patients, 10 without and 12 with sepsis, and 10 healthy subjects. We measured plasma levels of TPO, as well as leukocyte‐platelet binding and P‐selectin expression. The priming activity of plasma from burned patients or healthy subjects on platelet aggregation and leukocyte‐platelet binding, and the role of TPO in these effects were also studied in vitro. Results: Burned patients without and with sepsis showed higher circulating TPO levels and increased monocyte‐platelet binding compared with healthy subjects. Moreover, TPO levels, monocyte‐platelet binding and P‐selectin expression were significantly higher in burned patients with sepsis than in burned patients without sepsis. In vitro, plasma from burned patients without and with sepsis, but not from healthy subjects, primed platelet aggregation, monocyte‐platelet binding and platelet P‐selectin expression. The effect of plasma from burned patients with sepsis was significantly higher than that of plasma from burned patients without sepsis. An inhibitor of TPO prevented the priming effect of plasma from burned patients. Conclusions: Increased TPO levels may enhance platelet activation during burn injury and sepsis, potentially participating in the pathogenesis of multi‐organ failure in these diseases.


Basic Research in Cardiology | 2010

Thrombopoietin modulates cardiac contractility in vitro and contributes to myocardial depressing activity of septic shock serum

Enrico Lupia; Tiziana Spatola; Alessandra Cuccurullo; Ornella Bosco; Filippo Mariano; Angela Pucci; Roberta Ramella; Giuseppe Alloatti; Giuseppe Montrucchio

Thrombopoietin (TPO) is a humoral growth factor that has been shown to increase platelet activation in response to several agonists. Patients with sepsis have increased circulating TPO levels, which may enhance platelet activation, potentially participating to the pathogenesis of multi-organ failure. Aim of this study was to investigate whether TPO affects myocardial contractility and participates to depress cardiac function during sepsis. We showed the expression of the TPO receptor c-Mpl on myocardial cells and tissue by RT-PCR, immunofluorescence and western blotting. We then evaluated the effect of TPO on the contractile function of rat papillary muscle and isolated heart. TPO did not change myocardial contractility in basal conditions, but, when followed by epinephrine (EPI) stimulation, it blunted the enhancement of contractile force induced by EPI both in papillary muscle and isolated heart. An inhibitor of TPO prevented TPO effect on cardiac inotropy. Treatment of papillary muscle with pharmacological inhibitors of phosphatidylinositol 3-kinase, NO synthase, and guanilyl cyclase abolished TPO effect, indicating NO as the final mediator. We finally studied the role of TPO in the negative inotropic effect exerted by human septic shock (HSS) serum and TPO cooperation with TNF-α and IL-1β. Pre-treatment with the TPO inhibitor prevented the decrease in contractile force induced by HSS serum. Moreover, TPO significantly amplified the negative inotropic effect induced by TNF-α and IL-1β in papillary muscle. In conclusion, TPO negatively modulates cardiac inotropy in vitro and contributes to the myocardial depressing activity of septic shock serum.


Experimental Hematology | 2013

Telomere shortening in Ph-negative chronic myeloproliferative neoplasms: A biological marker of polycythemia vera and myelofibrosis, regardless of hydroxycarbamide therapy

Marco Ruella; Silvia Salmoiraghi; Alessandra Risso; Alessandra Carobbio; Stefano Buttiglieri; Tiziana Spatola; Piera Sivera; Irene Ricca; Tiziano Barbui; Corrado Tarella; Alessandro Rambaldi

The purpose of this study was to investigate telomere length (TL) in Ph-negative chronic myeloproliferative neoplasms (Ph-neg-CMNs), and the possible association of TL with disease progression and hydroxycarbamide (HU) treatment. TL was analyzed in peripheral blood samples from 239 patients with Ph-neg-CMNs, including polycythemia vera (PV), essential thrombocythemia and myelofibrosis (MF), and compared with age-matched healthy control subjects (CTR), along with some cases of secondary erythrocytosis (SE). More than half of the patients with CMN received at least 1 year of cytoreduction, mainly HU, before TL analysis. JAK2 mutation analysis was performed as well. TL was significantly shortened in patients with CMN compared with CTR (p < 0.0001). PV and MF showed the most pronounced decrease (p < 0.0001), whereas both essential thrombocythemia and SE showed no significant difference in TL compared with CTR. A short TL correlated with JAK2-V617F allele burden greater than 50% (p = 0.0025), age (p = 0.0132) and diagnosis of PV (p = 0.0122). No correlation was found with disease duration, history of thrombosis, cytoreductive treatment, antiaggregation agents, adverse cytogenetics, phlebotomies, or time to evolution to MF. In summary, TL is distinctly shortened in PV and MF, and it inversely correlates with JAK2V617F allele burden. In addition, HU is unlikely to contribute to telomere erosion. Lastly, PV and SE significantly differ in TL. Therefore, TL could be an additional diagnostic marker to identify and monitor Ph-neg-CMN patients.


Regulatory Peptides | 2011

A novel role of thrombopoietin as a physiological modulator of coronary flow.

Roberta Ramella; Maria Pia Gallo; Tiziana Spatola; Enrico Lupia; Giuseppe Alloatti

Thrombopoietin (TPO) is known for its ability to stimulate platelet production. However, little is currently known whether TPO plays a physiological function in the heart. The potential vasodilatory role of TPO was tested on the isolated rat heart. The expression of TPO receptor (c-mpl) and the TPO-dependent eNOS phosphorylation (P(Ser1179)) were studied on Cardiac-derived normal Human Micro Vascular Endothelial Cells (HMVEC-C) by Western blot analysis. While TPO (10-200 pg/mL) did not modify coronary flow (CF) under basal conditions, it reduced the coronary constriction caused by endothelin-1 (ET-1; 10nM) in a dose-dependent manner. This effect was blocked by both Wortmannin (100 nM) and L-NAME (100 nM); on HMVEC-C, TPO induced eNOS phosphorylation through a Wortmannin sensitive mechanism. Taken together, our data suggest a potential role of TPO as a physiological regulator of CF. By acting on specific receptors present on endothelial cells, TPO may induce PI3K/Akt-dependent eNOS phosphorylation and NO release.


PLOS ONE | 2016

Blockade of Thrombopoietin Reduces Organ Damage in Experimental Endotoxemia and Polymicrobial Sepsis.

Alessandra Cuccurullo; Elisabetta Greco; Enrico Lupia; Paolo De Giuli; Ornella Bosco; Erica L. Martin-Conte; Tiziana Spatola; Emilia Turco; Giuseppe Montrucchio

Background and Purpose Thrombopoietin (TPO), a growth factor primarily involved in thrombopoiesis may also have a role in the pathophysiology of sepsis. In patients with sepsis, indeed, TPO levels are markedly increased, with disease severity being the major independent determinant of TPO concentrations. Moreover, TPO increases and correlates with ex vivo indices of platelet activation in patients with burn injury upon sepsis development, and may contribute to depress cardiac contractility in septic shock. Still, the role of TPO in sepsis pathophysiology remains controversial, given the protective role of TPO in other experimental disease models, for instance in doxorubicin-induced cardiotoxicity and myocardial ischemia/reperfusion injury. The aim of our study was to define the contribution of TPO in the development of organ damage induced by endotoxemia or sepsis, and to investigate the effects of inhibiting TPO in these conditions. Methods We synthesized a chimeric protein able to inhibit TPO, mTPOR-MBP, and studied its effect in two murine experimental models, acute endotoxemia and cecal ligation and puncture (CLP) model. Results In both models, TPO levels markedly increased, from 289.80±27.87 pg/mL to 465.60±45.92 pg/mL at 3 hours in the LPS model (P<0.01), and from 265.00±26.02 pg/mL to 373.70±26.20 pg/mL in the CLP model (P<0.05), respectively. Paralleling TPO levels, also platelet-monocyte aggregates increased, from 32.86±2.48% to 46.13±1.39% at 3 hours in the LPS model (P<0.01), and from 43.68±1.69% to 56.52±4.66% in the CLP model (P<0.05). Blockade of TPO by mTPOR-MBP administration reduced histological damage in target organs, namely lung, liver, and gut. In particular, neutrophil infiltration and lung septal thickening were reduced from a score of 1.86±0.34 to 0.60±0.27 (P<0.01) and from 1.43±0.37 to 0.40±0.16 (P<0.05), respectively, in the LPS model at 3 hours, and from a score of 1.75±0.37 to 0.38±0.18 (P<0.01) and from 1.25±0.31 to 0.13±0.13 (P<0.001), respectively, in the CLP model. Similarly, the number of hepatic microabscesses was decreased from 14.14±1.41 to 3.64±0.56 in the LPS model at 3 hours (P<0.001), and from 1.71±0.29 to 0.13±0.13 in the CLP model (P<0.001). Finally, the diameter of intestinal villi decreased from 90.69±3.95 μm to 70.74±3.60 μm in the LPS model at 3 hours (P<0.01), and from 74.29±4.29 μm to 57.50±1.89 μm in the CLP model (P<0.01). This protective effect was associated with the blunting of the increase in platelet-monocyte adhesion, and, on the contrary, with increased platelet-neutrophil aggregates in the circulation, which may be related to decreased neutrophil sequestration into the inflamed tissues. Conversely, circulating cytokine levels were not significantly changed, in both models, by mTPOR-MBP administration. Conclusion Our results demonstrate that TPO participates in the development of organ damage induced by experimental endotoxemia or polymicrobial sepsis via a mechanism involving increased platelet-leukocyte adhesion, but not cytokine release, and suggest that blocking TPO may be useful in preventing organ damage in patients affected by systemic inflammatory response or sepsis.


PLOS ONE | 2017

Soluble CD40 ligand directly alters glomerular permeability and may act as a circulating permeability factor in FSGS

Sophie Doublier; Cristina Zennaro; Luca Musante; Tiziana Spatola; Giovanni Candiano; Maurizio Bruschi; Luca Besso; Massimo Cedrino; Michele Carraro; Gian Marco Ghiggeri; Giovanni Camussi; Enrico Lupia

CD40/CD40 ligand (CD40L) dyad, a co-stimulatory bi-molecular complex involved in the adaptive immune response, has also potent pro-inflammatory actions in haematopoietic and non-haematopoietic cells. We describe here a novel role for soluble CD40L (sCD40L) as modifier of glomerular permselectivity directly acting on glomerular epithelial cells (GECs). We found that stimulation of CD40, constitutively expressed on GEC cell membrane, by the sCD40L rapidly induced redistribution and loss of nephrin in GECs, and increased albumin permeability in isolated rat glomeruli. Pre-treatment with inhibitors of CD40-CD40L interaction completely prevented these effects. Furthermore, in vivo injection of sCD40L induced a significant reduction of nephrin and podocin expression in mouse glomeruli, although no significant increase of urine protein/creatinine ratio was observed after in vivo injection. The same effects were induced by plasma factors partially purified from post-transplant plasma exchange eluates of patients with focal segmental glomerulosclerosis (FSGS), and were blocked by CD40-CD40L inhibitors. Moreover, 17 and 34 kDa sCD40L isoforms were detected in the same plasmapheresis eluates by Western blotting. Finally, the levels of sCD40Lwere significantly increased in serum of children both with steroid-sensitive and steroid-resistant nephrotic syndrome (NS), and in adult patients with biopsy-proven FSGS, compared to healthy subjects, but neither in children with congenital NS nor in patients with membranous nephropathy. Our results demonstrate that sCD40L directly modifies nephrin and podocin distribution in GECs. Moreover, they suggest that sCD40L contained in plasmapheresis eluates from FSGS patients with post-transplant recurrence may contribute, presumably cooperating with other mediators, to FSGS pathogenesis by modulating glomerular permeability.


Experimental Hematology | 2011

The aging effect of chemotherapy on cultured human mesenchymal stem cells

Stefano Buttiglieri; Marco Ruella; Alessandra Risso; Tiziana Spatola; Lorenzo Silengo; Enrico Vittorio Avvedimento; Corrado Tarella

Collaboration


Dive into the Tiziana Spatola's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge