Tjibbe Donker
University Medical Center Groningen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tjibbe Donker.
Eurosurveillance | 2013
Corinna Glasner; Barbara Albiger; Girbe Buist; A. Tambić Andrašević; Rafael Cantón; Yehuda Carmeli; Alexander W. Friedrich; Christian G. Giske; Youri Glupczynski; Marek Gniadkowski; David M. Livermore; Patrice Nordmann; Laurent Poirel; Gian Maria Rossolini; Harald Seifert; Alkiviadis Vatopoulos; Timothy R. Walsh; Neil Woodford; Tjibbe Donker; Dominique L. Monnet; Hajo Grundmann
The spread of carbapenemase-producing Enterobacteriaceae (CPE) is a threat to healthcare delivery, although its extent differs substantially from country to country. In February 2013, national experts from 39 European countries were invited to self-assess the current epidemiological situation of CPE in their country. Information about national management of CPE was also reported. The results highlight the urgent need for a coordinated European effort on early diagnosis, active surveillance, and guidance on infection control measures.
PLOS Computational Biology | 2010
Tjibbe Donker; Jacco Wallinga; Hajo Grundmann
Rates of hospital-acquired infections, such as methicillin-resistant Staphylococcus aureus (MRSA), are increasingly used as quality indicators for hospital hygiene. Alternatively, these rates may vary between hospitals, because hospitals differ in admission and referral of potentially colonized patients. We assessed if different referral patterns between hospitals in health care networks can influence rates of hospital-acquired infections like MRSA. We used the Dutch medical registration of 2004 to measure the connectedness between hospitals. This allowed us to reconstruct the network of hospitals in the Netherlands. We used mathematical models to assess the effect of different patient referral patterns on the potential spread of hospital-acquired infections between hospitals, and between categories of hospitals (University medical centers, top clinical hospitals and general hospitals). University hospitals have a higher number of shared patients than teaching or general hospitals, and are therefore more likely to be among the first to receive colonized patients. Moreover, as the network is directional towards university hospitals, they have a higher prevalence, even when infection control measures are equally effective in all hospitals. Patient referral patterns have a profound effect on the spread of health care-associated infections like hospital-acquired MRSA. The MRSA prevalence therefore differs between hospitals with the position of each hospital within the health care network. Any comparison of MRSA rates between hospitals, as a benchmark for hospital hygiene, should therefore take the position of a hospital within the network into account.
PLOS ONE | 2012
Tjibbe Donker; Jacco Wallinga; Richard Slack; Hajo Grundmann
Hospital-acquired infections (HAI) are often seen as preventable incidents that result from unsafe practices or poor hospital hygiene. This however ignores the fact that transmissibility is not only a property of the causative organisms but also of the hosts who can translocate bacteria when moving between hospitals. In an epidemiological sense, hospitals become connected through the patients they share. We here postulate that the degree of hospital connectedness crucially influences the rates of infections caused by hospital-acquired bacteria. To test this hypothesis, we mapped the movement of patients based on the UK-NHS Hospital Episode Statistics and observed that the proportion of patients admitted to a hospital after a recent episode in another hospital correlates with the hospital-specific incidence rate of MRSA bacteraemia as recorded by mandatory reporting. We observed a positive correlation between hospital connectedness and MRSA bacteraemia incidence rate that is significant for all financial years since 2001 except for 2008–09. All years combined, this correlation is positive and significantly different from zero (partial correlation coefficient r = 0.33 (0.28 to 0.38)). When comparing the referral pattern for English hospitals with referral patterns observed in the Netherlands, we predict that English hospitals more likely see a swifter and more sustained spread of HAIs. Our results indicate that hospitals cannot be viewed as individual units but rather should be viewed as connected elements of larger modular networks. Our findings stress the importance of cooperative effects that will have a bearing on the planning of health care systems, patient management and hospital infection control.
PLOS ONE | 2010
Michiel van Boven; Tjibbe Donker; Mariken van der Lubben; Rianne van Gageldonk-Lafeber; Dennis E. te Beest; Marion Koopmans; Adam Meijer; Aura Timen; Corien Swaan; Anton Dalhuijsen; Susan Hahné; Anneke van den Hoek; Peter Teunis; Marianne A. B. van der Sande; Jacco Wallinga
Background Despite impressive advances in our understanding of the biology of novel influenza A(H1N1) virus, little is as yet known about its transmission efficiency in close contact places such as households, schools, and workplaces. These are widely believed to be key in supporting propagating spread, and it is therefore of importance to assess the transmission levels of the virus in such settings. Methodology/Principal Findings We estimate the transmissibility of novel influenza A(H1N1) in 47 households in the Netherlands using stochastic epidemic models. All households contained a laboratory confirmed index case, and antiviral drugs (oseltamivir) were given to both the index case and other households members within 24 hours after detection of the index case. Among the 109 household contacts there were 9 secondary infections in 7 households. The overall estimated secondary attack rate is low (0.075, 95%CI: 0.037–0.13). There is statistical evidence indicating that older persons are less susceptible to infection than younger persons (relative susceptibility of older persons: 0.11, 95%CI: 0.024–0.43. Notably, the secondary attack rate from an older to a younger person is 0.35 (95%CI: 0.14–0.61) when using an age classification of ≤12 versus >12 years, and 0.28 (95%CI: 0.12–0.50) when using an age classification of ≤18 versus >18 years. Conclusions/Significance Our results indicate that the overall household transmission levels of novel influenza A(H1N1) in antiviral-treated households were low in the early stage of the epidemic. The relatively high rate of adult-to-child transmission indicates that control measures focused on this transmission route will be most effective in minimizing the total number of infections.
Genome Research | 2016
Sandra Reuter; M. Estée Török; Matthew T. G. Holden; Rosy Reynolds; Kathy E. Raven; Beth Blane; Tjibbe Donker; Stephen D. Bentley; David M. Aanensen; Hajo Grundmann; Edward J. Feil; Brian G. Spratt; Julian Parkhill; Sharon J. Peacock
The correct interpretation of microbial sequencing data applied to surveillance and outbreak investigation depends on accessible genomic databases to provide vital genetic context. Our aim was to construct and describe a United Kingdom MRSA database containing over 1000 methicillin-resistant Staphylococcus aureus (MRSA) genomes drawn from England, Northern Ireland, Wales, Scotland, and the Republic of Ireland over a decade. We sequenced 1013 MRSA submitted to the British Society for Antimicrobial Chemotherapy by 46 laboratories between 2001 and 2010. Each isolate was assigned to a regional healthcare referral network in England and was otherwise grouped based on country of origin. Phylogenetic reconstructions were used to contextualize MRSA outbreak investigations and to detect the spread of resistance. The majority of isolates (n = 783, 77%) belonged to CC22, which contains the dominant United Kingdom epidemic clone (EMRSA-15). There was marked geographic structuring of EMRSA-15, consistent with widespread dissemination prior to the sampling decade followed by local diversification. The addition of MRSA genomes from two outbreaks and one pseudo-outbreak demonstrated the certainty with which outbreaks could be confirmed or refuted. We identified local and regional differences in antibiotic resistance profiles, with examples of local expansion, as well as widespread circulation of mobile genetic elements across the bacterial population. We have generated a resource for the future surveillance and outbreak investigation of MRSA in the United Kingdom and Ireland and have shown the value of this during outbreak investigation and tracking of antimicrobial resistance.
European Journal of Epidemiology | 2011
Tjibbe Donker; Michiel van Boven; W. Marijn van Ballegooijen; Tessa M. van’t Klooster; Cornelia C. Wielders; Jacco Wallinga
During emerging epidemics of infectious diseases, it is vital to have up-to-date information on epidemic trends, such as incidence or health care demand, because hospitals and intensive care units have limited excess capacity. However, real-time tracking of epidemics is difficult, because of the inherent delay between onset of symptoms or hospitalizations, and reporting. We propose a robust algorithm to correct for reporting delays, using the observed distribution of reporting delays. We apply the algorithm to pandemic influenza A/H1N1 2009 hospitalizations as reported in the Netherlands. We show that the proposed algorithm is able to provide unbiased predictions of the actual number of hospitalizations in real-time during the ascent and descent of the epidemic. The real-time predictions of admissions are useful to adjust planning in hospitals to avoid exceeding their capacity.
Journal of Hospital Infection | 2014
Tjibbe Donker; Jacco Wallinga; Hajo Grundmann
BACKGROUND Patients who seek treatment in hospitals can introduce high-risk clones of hospital-acquired, antibiotic-resistant pathogens from previous admissions. In this manner, different healthcare institutions become linked epidemiologically. All links combined form the national patient referral network, through which high-risk clones can propagate. AIM To assess the influence of changes in referral patterns and network structure on the dispersal of these pathogens. METHODS Hospital admission data were mapped to reconstruct the English patient referral network, and 12 geographically distinct healthcare collectives were identified. The number of patients admitted and referred to hospitals outside their collective was measured. Simulation models were used to assess the influence of changing network structure on the spread of hospital-acquired pathogens. FINDINGS Simulation models showed that decreasing the number of between-collective referrals by redirecting, on average, just 1.5 patients/hospital/day had a strong effect on dispersal. By decreasing the number of between-collective referrals, the spread of high-risk clones through the network can be reduced by 36%. Conversely, by creating supra-regional specialist centres that provide specialist care at national level, the rate of dispersal can increase by 48%. CONCLUSION The structure of the patient referral network has a profound effect on the epidemic behaviour of high-risk clones. Any changes that affect the number of referrals between healthcare collectives, inevitably affect the national dispersal of these pathogens. These effects should be taken into account when creating national specialist centres, which may jeopardize control efforts.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Mariano Ciccolini; Tjibbe Donker; Hajo Grundmann; Marc J. M. Bonten; Mark E. J. Woolhouse
Significance Early detection of new or novel variants of nosocomial pathogens (such as hospital-acquired methicillin-resistant Staphylococcus aureus) is a public health priority. However, surveillance effort is often limited by financial and practical constraints. Although this is widely recognized, no good evidence base exists to inform the design of efficient hospital-based surveillance systems. We address the key questions of how many and which hospitals should be included in such a surveillance system. Using hospital admissions data from England and The Netherlands, we model the spread of a pathogen among the network of hospitals connected by the movement of patients between them. We show how it is possible to design hospital-based surveillance systems that deliver earlier detection times for reduced effort. Early detection of new or novel variants of nosocomial pathogens is a public health priority. We show that, for healthcare-associated infections that spread between hospitals as a result of patient movements, it is possible to design an effective surveillance system based on a relatively small number of sentinel hospitals. We apply recently developed mathematical models to patient admission data from the national healthcare systems of England and The Netherlands. Relatively short detection times are achieved once 10–20% hospitals are recruited as sentinels and only modest reductions are seen as more hospitals are recruited thereafter. Using a heuristic optimization approach to sentinel selection, the same expected time to detection can be achieved by recruiting approximately half as many hospitals. Our study provides a robust evidence base to underpin the design of an efficient sentinel hospital surveillance system for novel nosocomial pathogens, delivering early detection times for reduced expenditure and effort.
PLOS ONE | 2013
Rolf J. F. Ypma; Tjibbe Donker; W. Marijn van Ballegooijen; Jacco Wallinga
Surveillance systems of contagious diseases record information on cases to monitor incidence of disease and to evaluate effectiveness of interventions. These systems focus on a well-defined population; a key question is whether observed cases are infected through local transmission within the population or whether cases are the result of importation of infection into the population. Local spread of infection calls for different intervention measures than importation of infection. Besides standardized information on time of symptom onset and location of cases, pathogen genotyping or sequencing offers essential information to address this question. Here we introduce a method that takes full advantage of both the genetic and epidemiological data to distinguish local transmission from importation of infection, by comparing inter-case distances in temporal, spatial and genetic data. Cases that are part of a local transmission chain will have shorter distances between their geographical locations, shorter durations between their times of symptom onset and shorter genetic distances between their pathogen sequences as compared to cases that are due to importation. In contrast to generic clustering algorithms, the proposed method explicitly accounts for the fact that during local transmission of a contagious disease the cases are caused by other cases. No pathogen-specific assumptions are needed due to the use of ordinal distances, which allow for direct comparison between the disparate data types. Using simulations, we test the performance of the method in identifying local transmission of disease in large datasets, and assess how sensitivity and specificity change with varying size of local transmission chains and varying overall disease incidence.
Journal of Hospital Infection | 2016
Tjibbe Donker; T. Bosch; Rolf J. F. Ypma; A.P.J. Haenen; W.M. van Ballegooijen; Max Heck; L. M. Schouls; Jacco Wallinga; Hajo Grundmann
Summary Background In The Netherlands, efforts to control meticillin-resistant Staphylococcus aureus (MRSA) in hospitals have been largely successful due to stringent screening of patients on admission and isolation of those that fall into defined risk categories. However, Dutch hospitals are not free of MRSA, and a considerable number of cases are found that do not belong to any of the risk categories. Some of these may be due to undetected nosocomial transmission, whereas others may be introduced from unknown reservoirs. Aim Identifying multi-institutional clusters of MRSA isolates to estimate the contribution of potential unobserved reservoirs in The Netherlands. Methods We applied a clustering algorithm that combines time, place, and genetics to routine data available for all MRSA isolates submitted to the Dutch Staphylococcal Reference Laboratory between 2008 and 2011 in order to map the geo-temporal distribution of MRSA clonal lineages in The Netherlands. Findings Of the 2966 isolates lacking obvious risk factors, 579 were part of geo-temporal clusters, whereas 2387 were classified as MRSA of unknown origin (MUOs). We also observed marked differences in the proportion of isolates that belonged to geo-temporal clusters between specific multi-locus variable number of tandem repeat analysis (MLVA) clonal complexes, indicating lineage-specific transmissibility. The majority of clustered isolates (74%) were present in multi-institutional clusters. Conclusion The frequency of MRSA of unknown origin among patients lacking obvious risk factors is an indication of a largely undefined extra-institutional but genetically highly diverse reservoir. Efforts to understand the emergence and spread of high-risk clones require the pooling of routine epidemiological information and typing data into central databases.