Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tjitske Heida is active.

Publication


Featured researches published by Tjitske Heida.


IEEE Transactions on Biomedical Engineering | 2010

Ambulatory Monitoring of Activities and Motor Symptoms in Parkinson's Disease

Daphne G. M. Zwartjes; Tjitske Heida; Jeroen P. P. van Vugt; Jan A. G. Geelen; Peter H. Veltink

Ambulatory monitoring of motor symptoms in Parkinsons disease (PD) can improve our therapeutic strategies, especially in patients with motor fluctuations. Previously published monitors usually assess only one or a few basic aspects of the cardinal motor symptoms in a laboratory setting. We developed a novel ambulatory monitoring system that provides a complete motor assessment by simultaneously analyzing current motor activity of the patient (e.g., sitting, walking, etc.) and the severity of many aspects related to tremor, bradykinesia, and hypokinesia. The monitor consists of a set of four inertial sensors. Validity of our monitor was established in seven healthy controls and six PD patients treated with deep brain stimulation (DBS) of the subthalamic nucleus. The patients were tested at three different levels of DBS treatment. Subjects were monitored while performing different tasks, including motor tests of the Unified PD Rating Scale (UPDRS). Output of the monitor was compared to simultaneously recorded videos. The monitor proved very accurate in discriminating between several motor activities. Monitor output correlated well with blinded UPDRS ratings during different DBS levels. The combined analysis of motor activity and symptom severity by our PD monitor brings true ambulatory monitoring of a wide variety of motor symptoms one step closer.


IEEE Transactions on Biomedical Engineering | 2002

Investigating membrane breakdown of neuronal cells exposed to nonuniform electric fields by finite-element modeling and experiments

Tjitske Heida; Joost B. M. Wagenaar; Wim Rutten; Enrico Marani

High electric field strengths may induce high cell membrane potentials. At a certain breakdown level the membrane potential becomes constant due to the transition from an insulating state into a high conductivity and high permeability state. Pores are thought to be created through which molecules may be transported into and out of the cell interior. Membrane rupture may follow due to the expansion of pores or the creation of many small pores across a certain part of the membrane surface. In nonuniform electric fields, it is difficult to predict the electroporated membrane area. Therefore, in this study the induced membrane potential and the membrane area where this potential exceeds the breakdown level is investigated by finite-element modeling. Results from experiments in which the collapse of neuronal cells was detected were combined with the computed field strengths in order to investigate membrane breakdown and membrane rupture. It was found that in nonuniform fields membrane rupture is position dependent, especially at higher breakdown levels. This indicates that the size of the membrane site that is affected by electroporation determines rupture.


Journal of Physics D | 2002

Understanding dielectrophoretic trapping of neuronal cells: modelling electric field, electrode-liquid interface and fluid flow

Tjitske Heida; Wim Rutten; Enrico Marani

By application of dielectrophoresis neuronal cells can be trapped successfully. Several trapping experiments have been performed using a quadrupole electrode structure at different amplitudes (1, 3, and 5?Vpp) and frequencies (10-50?MHz). Due to the high conductivity of the suspending medium negative dielectrophoretic forces are created. The dielectrophoretic force is determined by the gradient of the electric field. However, the electrode-liquid interfaces are responsible for decreased electric field strengths, and thus decreased field gradients, inside the medium, especially at lower frequencies. Circuit modelling is used to determine the frequency-dependent electric field inside the medium. The creation of an electric field in high conductivity of the medium results in local heating, which in turn induces fluid flow. This flow also drives the neurons and was found to enhance the trapping effect of the dielectrophoretic force. With the use of finite element modelling, this aspect was investigated. The results show that the dielectrophoretic force is dominating just above the substrate. When the upward dielectrophoretic force is large enough to levitate the cells, they may be dragged along with the fluid flow. The result is that more cells may be trapped than expected on the basis of dielectrophoresis alone.


Journal of Neuroscience Methods | 2001

Viability of dielectrophoretically trapped neural cortical cells in culture

Tjitske Heida; P Vulto; Wim Rutten; Enrico Marani

Negative dielectrophoretic trapping of neural cells is an efficient way to position neural cells on the electrode sites of planar micro-electrode arrays. The preservation of viability of the neural cells is essential for this approach. This study investigates the viability of postnatal cortical rat cells that were dielectrophoretically trapped. Morphological characteristics as well as the ratio of the number of outgrowing to the number of non-outgrowing cortical cells were used to compare the viability of trapped cells to that of non-exposed cells. The morphological characteristics include the area of the cell, representing adhesive properties, and the number and length of the processes, as a measure for functional recovery. The results presented in this paper show that the viable state of dielectrophoretically trapped postnatal cortical rat cells under the conditions used was similar to that of non-exposed cells.


Advances in Anatomy Embryology and Cell Biology | 2008

The subthalamic nucleus. Part I: development, cytology, topography and connections.

Enrico Marani; Tjitske Heida; Egbert A. J. F. Lakke; Kamen G. Usunoff

This monograph (Part I of two volumes) on the subthalamic nucleus (STN) accentuates the gap between experimental animal and human information concerning subthalamic development, cytology, topography and connections. The light and electron microscopical cytology focuses on the open nucleus concept and the neuronal types present in the STN. The cytochemistry encompasses enzymes, NO, glial fibrillary acidic protein (GFAP), calcium binding proteins, and receptors (dopamine, cannabinoid, opioid, glutamate, gamma-aminobutyric acid (GABA), serotonin, cholinergic, and calcium channels). The ontogeny of the subthalamic cell cord is also reviewed. The topography concerns the rat, cat, baboon and human STN. The descriptions of the connections are also given from a historical point of view. Recent tracer studies on the rat nigro-subthalamic connection revealed contralateral projections. Part II of the two volumes (volume 199) on the subthalamic nucleus (STN) starts with a systemic model of the basal ganglia to evaluate the position of the STN in the direct, indirect and hyperdirect pathways. A summary of in vitro studies is given, describing STN spontaneous activity as well as responses to depolarizing and hyperpolarizing inputs and high-frequency stimulation. STN bursting activity and the underlying ionic mechanisms are investigated. Deep brain stimulation used for symptomatic treatment of Parkinsons disease is discussed in terms of the elements that are influenced and its hypothesized mechanisms. This part of the monograph explores the pedunculopontine-subthalamic connections and summarizes attempts to mimic neurotransmitter actions of the pedunculopontine nucleus in cell cultures and high-frequency stimulation on cultured dissociated rat subthalamic neurons. STN cell models--single- and multi-compartment models and system-level models are discussed in relation to subthalamic function and dysfunction. Parts I and II are compared.


European Journal of Neuroscience | 2009

Frequency-selectivity of a thalamocortical relay neuron during parkinson's disease and deep brain stimulation: A computational study

H. Cagnan; Hil Gaétan Ellart Meijer; van Stephan A. Gils; Martin Krupa; Tjitske Heida; Michelle Rudolph; Wyse J. Wadman; Hubert Cecile Francois Martens

In this computational study, we investigated (i) the functional importance of correlated basal ganglia (BG) activity associated with Parkinson’s disease (PD) motor symptoms by analysing the effects of globus pallidus internum (GPi) bursting frequency and synchrony on a thalamocortical (TC) relay neuron, which received GABAergic projections from this nucleus; (ii) the effects of subthalamic nucleus (STN) deep brain stimulation (DBS) on the response of the TC relay neuron to synchronized GPi oscillations; and (iii) the functional basis of the inverse relationship that has been reported between DBS frequency and stimulus amplitude, required to alleviate PD motor symptoms [A. L. Benabid et al. (1991)Lancet, 337, 403–406]. The TC relay neuron selectively responded to and relayed synchronized GPi inputs bursting at a frequency located in the range 2–25 Hz. Input selectivity of the TC relay neuron is dictated by low‐threshold calcium current dynamics and passive membrane properties of the neuron. STN‐DBS prevented the TC relay neuron from relaying synchronized GPi oscillations to cortex. Our model indicates that DBS alters BG output and input selectivity of the TC relay neuron, providing an explanation for the clinically observed inverse relationship between DBS frequency and stimulus amplitude.


Journal of Neural Engineering | 2011

From Parkinsonian thalamic activity to restoring thalamic relay using deep brain stimulation: new insights from computational modeling.

Hil Gaétan Ellart Meijer; Maciej Krupa; H. Cagnan; Marcel Antonius Johannes Lourens; Tjitske Heida; Hubert Cecile Francois Martens; L.J. Bour; S.A. van Gils

We present a computational model of a thalamocortical relay neuron for exploring basal ganglia thalamocortical loop behavior in relation to Parkinsons disease and deep brain stimulation (DBS). Previous microelectrode, single-unit recording studies demonstrated that oscillatory interaction within and between basal ganglia nuclei is very often accompanied by synchronization at Parkinsonian rest tremor frequencies (3-10 Hz). These oscillations have a profound influence on thalamic projections and impair the thalamic relaying of cortical input by generating rebound action potentials. Our model describes convergent inhibitory input received from basal ganglia by the thalamocortical cells based on characteristics of normal activity, and/or low-frequency oscillations (activity associated with Parkinsons disease). In addition to simulated input, we also used microelectrode recordings as inputs for the model. In the resting state, and without additional sensorimotor input, pathological rebound activity is generated for even mild Parkinsonian input. We have found a specific stimulation window of amplitudes and frequencies for periodic input, which corresponds to high-frequency DBS, and which also suppresses rebound activity for mild and even more prominent Parkinsonian input. When low-frequency pathological rebound activity disables the thalamocortical cells ability to relay excitatory cortical input, a stimulation signal with parameter settings corresponding to our stimulation window can restore the thalamocortical cells relay functionality.


Journal of Neuroengineering and Rehabilitation | 2013

Power spectral density analysis of physiological, rest and action tremor in Parkinson’s disease patients treated with deep brain stimulation

Tjitske Heida; E.C. Wentink; Enrico Marani

BackgroundObservation of the signals recorded from the extremities of Parkinson’s disease patients showing rest and/or action tremor reveal a distinct high power resonance peak in the frequency band corresponding to tremor. The aim of the study was to investigate, using quantitative measures, how clinically effective and less effective deep brain stimulation protocols redistribute movement power over the frequency bands associated with movement, pathological and physiological tremor, and whether normal physiological tremor may reappear during those periods that tremor is absent.MethodsThe power spectral density patterns of rest and action tremor were studied in 7 Parkinson’s disease patients treated with (bilateral) deep brain stimulation of the subthalamic nucleus. Two tests were carried out: 1) the patient was sitting at rest; 2) the patient performed a hand or foot tapping movement. Each test was repeated four times for each extremity with different stimulation settings applied during each repetition. Tremor intermittency was taken into account by classifying each 3-second window of the recorded angular velocity signals as a tremor or non-tremor window.ResultsThe distribution of power over the low frequency band (<3.5 Hz – voluntary movement), tremor band (3.5-7.5 Hz) and high frequency band (>7.5 Hz – normal physiological tremor) revealed that rest and action tremor show a similar power-frequency shift related to tremor absence and presence: when tremor is present most power is contained in the tremor frequency band; when tremor is absent lower frequencies dominate. Even under resting conditions a relatively large low frequency component became prominent, which seemed to compensate for tremor. Tremor absence did not result in the reappearance of normal physiological tremor.ConclusionParkinson’s disease patients continuously balance between tremor and tremor suppression or compensation expressed by power shifts between the low frequency band and the tremor frequency band during rest and voluntary motor actions. This balance shows that the pathological tremor is either on or off, with the latter state not resembling that of a healthy subject. Deep brain stimulation can reverse the balance thereby either switching tremor on or off.


Advances in Anatomy Embryology and Cell Biology | 2008

The subthalamic nucleus part II: modelling and simulation of activity.

Tjitske Heida; Enrico Marani; Kamen G. Usunoff

Part I of The Subthalamic Nucleus (volume 198) (STN) accentuates the gap between experimental animal and human information concerning subthalamic development, cytology, topography and connections.The light and electron microscopical cytology focuses on the open nucleus concept and the neuronal types present in the STN. The cytochemistry encompasses enzymes, NO, glial fibrillary acidic protein (GFAP), calcium binding proteins, and receptors (dopamine, cannabinoid, opioid, glutamate, gamma-aminobutyric acid (GABA), serotonin, cholinergic, and calcium channels). The ontogeny of the subthalamic cell cord is also reviewed. The topography concerns the rat, cat, baboon and human STN. The descriptions of the connections are also given from a historical point of view. Recent tracer studies on the rat nigro-subthalamic connection revealed contralateral projections. This monograph (Part II of the two volumes) on the subthalamic nucleus (STN) starts with a systemic model of the basal ganglia to evaluate the position of the STN in the direct, indirect and hyperdirect pathways. A summary of in vitro studies is given, describing STN spontaneous activity as well as responses to depolarizing and hyperpolarizing inputs and high-frequency stimulation. STN bursting activity and the underlying ionic mechanisms are investigated. Deep brain stimulation used for symptomatic treatment of Parkinsons disease is discussed in terms of the elements that are influenced and its hypothesized mechanisms. This part of the monograph explores the pedunculopontine-subthalamic connections and summarizes attempts to mimic neurotransmitter actions of the pedunculopontine nucleus in cell cultures and high-frequency stimulation on cultured dissociated rat subthalamic neurons. STN cell models - single- and multi-compartment models and system-level models are discussed in relation to subthalamic function and dysfunction. Parts I and II are compared.


Neuroscience Letters | 2012

Mild dopaminergic lesions are accompanied by robust changes in subthalamic nucleus activity

Marcus L.F. Janssen; Daphne G. M. Zwartjes; Sonny Tan; Rinske Vlamings; Ali Jahanshahi; Tjitske Heida; Govert Hoogland; Harry W.M. Steinbusch; Veerle Visser-Vandewalle; Yasin Temel

The subthalamic nucleus (STN) is a major player in the input and output of the basal ganglia motor circuitry. The neuronal regular firing pattern of the STN changes into a pathological bursting mode in both advanced Parkinsons disease (PD) and in PD animals models with severe dopamine depletion. One of the current hypothesis, based on clinical and experimental evidence, is that this typical burst activity is responsible for some of the principal motor symptoms. In the current study we tested whether mild DA depletion, mimicking early stages of PD, induced deficits in motor behaviour and changes in STN neuronal activity. The present study demonstrated that rats with a mild lesion (20-40% loss of DA neurons) and a slowed motor response, but without gross motor abnormalities already have an increased number of bursty STN neurons under urethane anaesthesia. These findings indicate that the early increase in STN burst activity is a compensatory mechanism to maintain the dopamine homeostasis in the basal ganglia.

Collaboration


Dive into the Tjitske Heida's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Zhao

University of Twente

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L.J. Bour

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge