Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tobias A. Schrag is active.

Publication


Featured researches published by Tobias A. Schrag.


Theoretical and Applied Genetics | 2013

Genetic diversity analysis of elite European maize (Zea mays L.) inbred lines using AFLP, SSR, and SNP markers reveals ascertainment bias for a subset of SNPs.

Elisabetta Frascaroli; Tobias A. Schrag; Albrecht E. Melchinger

Recent advances in high-throughput sequencing technologies have triggered a shift toward single-nucleotide polymorphism (SNP) markers. A systematic bias can be introduced if SNPs are ascertained in a small panel of genotypes and then used for characterizing a larger population (ascertainment bias). With the objective of evaluating a potential ascertainment bias of the Illumina MaizeSNP50 array with respect to elite European maize dent and flint inbred lines, we compared the genetic diversity among these materials based on 731 amplified fragment length polymorphisms (AFLPs), 186 simple sequence repeats (SSRs), 41,434 SNPs of the MaizeSNP50 array (SNP-A), and two subsets of it, i.e., 30,068 Panzea (SNP-P) and 11,366 Syngenta markers (SNP-S). We evaluated the bias effects on major allele frequency, allele number, gene diversity, modified Roger’s distance (MRD), and on molecular variance (AMOVA). We revealed ascertainment bias in SNP-A, compared to AFLPs and SSRs. It affected especially European flint lines analyzed with markers (SNP-S) specifically developed to maximize differences among North American dent germplasm. The bias affected all genetic parameters, but did not substantially alter the relative distances between inbred lines within groups. For these reasons, we conclude that the SNP markers of the MaizeSNP50 array can be employed for breeding purposes in the investigated material. However, attention should be paid in case of comparisons between genotypes belonging to different heterotic groups. In this case, it is advisable to prefer a marker subset with potentially low ascertainment bias, like in our case the SNP-P marker set.


Genetics | 2014

Genome Properties and Prospects of Genomic Prediction of Hybrid Performance in a Breeding Program of Maize

Frank Technow; Tobias A. Schrag; Wolfgang Schipprack; Eva Bauer; H. Simianer; Albrecht E. Melchinger

Maize (Zea mays L.) serves as model plant for heterosis research and is the crop where hybrid breeding was pioneered. We analyzed genomic and phenotypic data of 1254 hybrids of a typical maize hybrid breeding program based on the important Dent × Flint heterotic pattern. Our main objectives were to investigate genome properties of the parental lines (e.g., allele frequencies, linkage disequilibrium, and phases) and examine the prospects of genomic prediction of hybrid performance. We found high consistency of linkage phases and large differences in allele frequencies between the Dent and Flint heterotic groups in pericentromeric regions. These results can be explained by the Hill–Robertson effect and support the hypothesis of differential fixation of alleles due to pseudo-overdominance in these regions. In pericentromeric regions we also found indications for consistent marker–QTL linkage between heterotic groups. With prediction methods GBLUP and BayesB, the cross-validation prediction accuracy ranged from 0.75 to 0.92 for grain yield and from 0.59 to 0.95 for grain moisture. The prediction accuracy of untested hybrids was highest, if both parents were parents of other hybrids in the training set, and lowest, if none of them were involved in any training set hybrid. Optimizing the composition of the training set in terms of number of lines and hybrids per line could further increase prediction accuracy. We conclude that genomic prediction facilitates a paradigm shift in hybrid breeding by focusing on the performance of experimental hybrids rather than the performance of parental lines in testcrosses.


Theoretical and Applied Genetics | 2009

Molecular marker-based prediction of hybrid performance in maize using unbalanced data from multiple experiments with factorial crosses.

Tobias A. Schrag; Jens Möhring; Hans Peter Maurer; Baldev S. Dhillon; Albrecht E. Melchinger; Hans-Peter Piepho; Anker P. Sørensen; Matthias Frisch

In hybrid breeding, the prediction of hybrid performance (HP) is extremely important as it is difficult to evaluate inbred lines in numerous cross combinations. Recent developments such as doubled haploid production and molecular marker technologies have enhanced the prospects of marker-based HP prediction to accelerate the breeding process. Our objectives were to (1) predict HP using a combined analysis of hybrids and parental lines from a breeding program, (2) evaluate the use of molecular markers in addition to phenotypic and pedigree data, (3) evaluate the combination of line per se data with marker-based estimates, (4) study the effect of the number of tested parents, and (5) assess the advantage of haplotype blocks. An unbalanced dataset of 400 hybrids from 9 factorial crosses tested in different experiments and data of 79 inbred parents were subjected to combined analyses with a mixed linear model. Marker data of the inbreds were obtained with 20 AFLP primer–enzyme combinations. Cross-validation was used to assess the performance prediction of hybrids of which no or only one parental line was testcross evaluated. For HP prediction, the highest proportion of explained variance (R2), 46% for grain yield (GY) and 70% for grain dry matter content (GDMC), was obtained from line per se best linear unbiased prediction (BLUP) estimates plus marker effects associated with mid-parent heterosis (TEAM-LM). Our study demonstrated that HP was efficiently predicted using molecular markers even for GY when testcross data of both parents are not available. This can help in improving greatly the efficiency of commercial hybrid breeding programs.


Theoretical and Applied Genetics | 2010

Broadening the genetic base of European maize heterotic pools with US Cornbelt germplasm using field and molecular marker data

Jochen C. Reif; Sandra Fischer; Tobias A. Schrag; Kendall R. Lamkey; D. Klein; Baldev S. Dhillon; H. Friedrich Utz; Albrecht E. Melchinger

Maize (Zea mays L.) breeders are concerned about the narrowing of the genetic base of elite germplasm. To reverse this trend, elite germplasm from other geographic regions can be introgressed, but due to lack of adaptation it is difficult to assess their breeding potential in the targeted environment. The objectives of this study were to (1) investigate the relationship between European and US maize germplasm, (2) examine the suitability of different mega-environments and measures of performance to assess the breeding potential of exotics, and (3) study the relationship of genetic distance with mid-parent heterosis (MPH). Eight European inbreds from the Dent and Flint heterotic groups, 11 US inbreds belonging to Stiff Stalk (SS), non-Stiff Stalk (NSS), and CIMMYT Pool 41, and their 88 factorial crosses in F1 and F2 generations were evaluated for grain yield and dry matter concentration. The experiments were conducted in three mega-environments: Central Europe (target mega-environment), US Cornbelt (mega-environment where donor lines were developed), and Southeast Europe (an intermediate mega-environment). The inbreds were also fingerprinted with 266 SSR markers. Suitable criteria to identify promising exotic germplasm were F1 hybrid performance in the targeted mega-environment and F1 and parental performance in the intermediate mega-environment. Marker-based genetic distances reflected relatedness among the inbreds, but showed no association with MPH. Based on genetic distance, MPH, and F1 performance, we suggest to introgress SS germplasm into European Dents and NSS into European Flints, in order to exploit the specific adaptation of European flint germplasm and the excellent combining ability of US germplasm in European maize breeding programs.


Plant Cell and Environment | 2013

Association mapping for chilling tolerance in elite flint and dent maize inbred lines evaluated in growth chamber and field experiments

Alexander Strigens; Niclas M. Freitag; Xavier Gilbert; Christoph Grieder; Christian Riedelsheimer; Tobias A. Schrag; Rainer Messmer; Albrecht E. Melchinger

Chilling sensitivity of maize is a strong limitation for its cultivation in the cooler areas of the northern and southern hemisphere because reduced growth in early stages impairs on later biomass accumulation. Efficient breeding for chilling tolerance is hampered by both the complex physiological response of maize to chilling temperatures and the difficulty to accurately measure chilling tolerance in the field under fluctuating climatic conditions. For this research, we used genome-wide association (GWA) mapping to identify genes underlying chilling tolerance under both controlled and field conditions in a broad germplasm collection of 375 maize inbred lines genotyped with 56 110 single nucleotide polymorphism (SNP). We identified 19 highly significant association signals explaining between 5.7 and 52.5% of the phenotypic variance observed for early growth and chlorophyll fluorescence parameters. The allelic effect of several SNPs identified for early growth was associated with temperature and incident radiation. Candidate genes involved in ethylene signalling, brassinolide, and lignin biosynthesis were found in their vicinity. The frequent involvement of candidate genes into signalling or gene expression regulation underlines the complex response of photosynthetic performance and early growth to climatic conditions, and supports pleiotropism as a major cause of co-locations of quantitative trait loci for these highly polygenic traits.


Molecular Breeding | 2008

Crop model based QTL analysis across environments and QTL based estimation of time to floral induction and flowering in Brassica oleracea

Ralf Uptmoor; Tobias A. Schrag; Hartmut Stützel; Elisabeth Esch

Studying quantitative traits is complicated due to genotype by environment interactions. One strategy to overcome these difficulties is to combine quantitative trait loci (QTL) and ecophysiological models, e.g. by identifying QTLs for the response curves of adaptive traits to influential environmental factors. A B. oleracea DH-population segregating for time to flowering was cultivated at different temperature regimes. Composite interval mapping was carried out on the three parameters of a model describing time to flowering as a function of temperature, i.e. on the intercept and slope of the response of time to floral induction to temperature and on the duration from transition to flowering. The additive effects of QTLs detected for the parameters have been used to estimate time to floral induction and flowering in the B. oleracea DH-population. The combined QTL and crop model explained 66% of the phenotypic variation for time to floral induction and 56% of the phenotypic variation for time to flowering. Estimation of time to floral induction and flowering based on environment specific QTLs explained 61 and 41% of the phenotypic variation. Results suggest that flowering time can be predicted effectively by coupling QTL and crop models and that using crop modelling tools for QTL analysis increases the power of QTL detection.


BMC Plant Biology | 2010

Dissecting grain yield pathways and their interactions with grain dry matter content by a two-step correlation approach with maize seedling transcriptome

Junjie Fu; Alexander Thiemann; Tobias A. Schrag; Albrecht E. Melchinger; Stefan Scholten; Matthias Frisch

BackgroundThe importance of maize for human and animal nutrition, but also as a source for bio-energy is rapidly increasing. Maize yield is a quantitative trait controlled by many genes with small effects, spread throughout the genome. The precise location of the genes and the identity of the gene networks underlying maize grain yield is unknown. The objective of our study was to contribute to the knowledge of these genes and gene networks by transcription profiling with microarrays.ResultsWe assessed the grain yield and grain dry matter content (an indicator for early maturity) of 98 maize hybrids in multi-environment field trials. The gene expression in seedlings of the parental inbred lines, which have four different genetic backgrounds, was assessed with genome-scale oligonucleotide arrays. We identified genes associated with grain yield and grain dry matter content using a newly developed two-step correlation approach and found overlapping gene networks for both traits. The underlying metabolic pathways and biological processes were elucidated. Genes involved in sucrose degradation and glycolysis, as well as genes involved in cell expansion and endocycle were found to be associated with grain yield.ConclusionsOur results indicate that the capability of providing energy and substrates, as well as expanding the cell at the seedling stage, highly influences the grain yield of hybrids. Knowledge of these genes underlying grain yield in maize can contribute to the development of new high yielding varieties.


Plant Biology | 2011

Prediction of flowering time in Brassica oleracea using a quantitative trait loci-based phenology model

Ralf Uptmoor; J. Li; Tobias A. Schrag; Hartmut Stützel

Uniformly developing plants with a predictable time to harvest or flowering under unfavourable climate conditions are a major breeding goal in crop species. The main flowering regulators and their response to environmental signals have been identified in Arabidopsis thaliana and homologues of flowering genes have been mapped in many crop species. However, it remains unclear which genes determine within and across genotype flowering time variability in Brassica oleracea and how genetic flowering time regulation is influenced by environmental factors. The goal of this study is model-based prediction of flowering time in a B. oleracea DH-line population using genotype-specific and quantitative trait loci (QTL) model input parameters. A QTL-based phenology model accounting for genotypic differences in temperature responses during vernalisation and non-temperature-sensitive durations from floral transition to flowering was evaluated in two field trials. The model was parameterised using original genotype-specific model input parameters and QTL effects. The genotype-specific model parameterisation showed accurate predictability of flowering time if floral induction was promoted by low temperature (R(2) = 0.81); unfavourably high temperatures reduced predictability (R(2) = 0.65). Replacing original model input parameters by QTL effects reduced the capability of the model to describe across-genotype variability (R(2) = 0.59 and 0.50). Flowering time was highly correlated with a model parameter accounting for vernalisation effects. Within-genotype variability was significantly correlated with the same parameter if temperature during the inductive phase was high. We conclude that flowering time variability across genotypes was largely due to differences in vernalisation response, although it has been shown elsewhere that the candidate FLOWERING LOCUS C (FLC) did not co-segregate with flowering time in the same population. FLC independent vernalisation pathways have been described for several species, but not yet for B. oleracea.


Genetics | 2016

The Genetic Basis of Haploid Induction in Maize Identified with a Novel Genome-Wide Association Method

Haixiao Hu; Tobias A. Schrag; Regina Peis; Sandra Unterseer; Wolfgang Schipprack; Shaojiang Chen; Jinsheng Lai; Jianbing Yan; Boddupalli M. Prasanna; Sudha K. Nair; Vijay Chaikam; Valeriu Rotarenco; Olga A. Shatskaya; Alexandra Zavalishina; Stefan Scholten; Chris-Carolin Schön; Albrecht E. Melchinger

In vivo haploid induction (HI) triggered by pollination with special intraspecific genotypes, called inducers, is unique to Zea mays L. within the plant kingdom and has revolutionized maize breeding during the last decade. However, the molecular mechanisms underlying HI in maize are still unclear. To investigate the genetic basis of HI, we developed a new approach for genome-wide association studies (GWAS), termed conditional haplotype extension (CHE) test that allows detection of selective sweeps even under almost perfect confounding of population structure and trait expression. Here, we applied this test to identify genomic regions required for HI expression and dissected the combined support interval (50.34 Mb) of the QTL qhir1, detected in a previous study, into two closely linked genomic segments relevant for HI expression. The first, termed qhir11 (0.54 Mb), comprises an already fine-mapped region but was not diagnostic for differentiating inducers and noninducers. The second segment, termed qhir12 (3.97 Mb), had a haplotype allele common to all 53 inducer lines but not found in any of the 1482 noninducers. By comparing resequencing data of one inducer with 14 noninducers, we detected in the qhir12 region three candidate genes involved in DNA or amino acid binding, however, none for qhir11. We propose that the CHE test can be utilized in introgression breeding and different fields of genetics to detect selective sweeps in heterogeneous genetic backgrounds.


BMC Plant Biology | 2014

Genome-wide meta-analysis of maize heterosis reveals the potential role of additive gene expression at pericentromeric loci

Alexander Thiemann; Junjie Fu; Felix Seifert; Robert Grant-Downton; Tobias A. Schrag; Heike Pospisil; Matthias Frisch; Albrecht E. Melchinger; Stefan Scholten

BackgroundThe identification of QTL involved in heterosis formation is one approach to unravel the not yet fully understood genetic basis of heterosis - the improved agronomic performance of hybrid F1 plants compared to their inbred parents. The identification of candidate genes underlying a QTL is important both for developing markers and determining the molecular genetic basis of a trait, but remains difficult owing to the large number of genes often contained within individual QTL. To address this problem in heterosis analysis, we applied a meta-analysis strategy for grain yield (GY) of Zea mays L. as example, incorporating QTL-, hybrid field-, and parental gene expression data.ResultsFor the identification of genes underlying known heterotic QTL, we made use of tight associations between gene expression pattern and the trait of interest, identified by correlation analyses. Using this approach genes strongly associated with heterosis for GY were discovered to be clustered in pericentromeric regions of the complex maize genome. This suggests that expression differences of sequences in recombination-suppressed regions are important in the establishment of heterosis for GY in F1 hybrids and also in the conservation of heterosis for GY across genotypes. Importantly functional analysis of heterosis-associated genes from these genomic regions revealed over-representation of a number of functional classes, identifying key processes contributing to heterosis for GY. Based on the finding that the majority of the analyzed heterosis-associated genes were addtitively expressed, we propose a model referring to the influence of cis-regulatory variation on heterosis for GY by the compensation of fixed detrimental expression levels in parents.ConclusionsThe study highlights the utility of a meta-analysis approach that integrates phenotypic and multi-level molecular data to unravel complex traits in plants. It provides prospects for the identification of genes relevant for QTL, and also suggests a model for the potential role of additive expression in the formation and conservation of heterosis for GY via dominant, multigenic quantitative trait loci. Our findings contribute to a deeper understanding of the multifactorial phenomenon of heterosis, and thus to the breeding of new high yielding varieties.

Collaboration


Dive into the Tobias A. Schrag's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junjie Fu

University of Hohenheim

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge