Tobias Baselt
Dresden University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tobias Baselt.
Applied Optics | 2011
Pascal Böswetter; Tobias Baselt; Frank Ebert; Fabiola Basan; Peter Hartmann
Fiber optical applications are primarily limited by group-velocity dispersion. In single-mode fibers, material and waveguide dispersion yield a total chromatic dispersion where no modal influences occur. However, modal dispersion plays a significant role in multimode fibers, whereas waveguide dispersion is negligible. The concern of this report is the investigation of the dispersion properties of photonic crystal fibers, with both single-mode and multimode operation, using a time-frequency domain white-light Mach-Zehnder interferometer. The results demonstrate the possibility to separate different transverse fiber modes and, hence, to measure the material, waveguide, and modal dispersion of optical fibers.
Proceedings of SPIE | 2011
Pascal Böswetter; Tobias Baselt; Frank Ebert; Fabiola Basan; Peter Hartmann
Optical fibers are used in various applications, e. g. optical communication, material processing, as a laser medium or to generate efficient supercontinua. For most of these applications the knowledge of the dispersion is an essential prerequisite. The dispersion and modal properties of photonic crystal fibers (PCF) strongly depend on the hole diameter and pitch. Since fabrication tolerances affect the structure of the photonic lattice, the dispersion behavior as well as the number of guided transverse modes can differ from numerical calculations. Dispersion measurement of singlemode photonic crystal fibers has been well described in recent papers. However, the determination of dispersion in the presence of higher-order modes is much more difficult. To measure the dispersion of optical fibers with high accuracy, a time-domain white-light interferometer based on a Mach-Zehnder interferometer is presented. The experimental setup allows to determine the wavelength-dependent differential group delay of light travelling through conventional fibers and PCFs within the wavelength range from VIS to NIR. Interferences appear due to superposition of two laser beams, one propagating through the tested fiber and the other travelling through air. Measuring the different group delays of a step-index fiber shows the sufficient accuracy of the interferometer. This paper demonstrates a simple yet effective way to suppress higher-order modes, making it possible to measure the chromatic dispersion of singlemode as well as multimode fibers.
Journal of Biophotonics | 2013
Markus Ernstberger; Pascal Boeswetter; Tobias Baselt; Frank Ebert; Fabiola Basan; Hanno Steinke; Niels Hammer; Ronny Grunert; Peter Hartmann
Thin slices of human tissues are characterized concerning reflection and transmission in a wavelength range from 400 to 1700 nm. The results are primarily useful to find a wavelength for the detection of subjacent blood vessels during surgical procedures, especially neurological surgery. The measurements have been conducted using a customized measuring station, utilizing two halogen bulb lamps and two spectrometers. This paper focuses on creating a data base with the optical properties of artery, brain, bone, nasal mucosa, and nerve. The spectral distributions are compared among each other, similarities and differences are pointed out. Each tissue has got unique spectral characteristics, whereas typical absorption bands can be found in the overall tissues, especially hemoglobin and water absorption bands. The reflectivity maxima are typically located in the red or near-infrared. All the transmission maxima are located between 1075 nm and 1100 nm. The measurements have been conducted at the Institute of Anatomy at the University of Leipzig.
Proceedings of SPIE, the International Society for Optical Engineering | 2009
Tobias Baselt; Thomas Hammer; Fabiola Basan; Peter Hartmann
Precise optical loss measurements are a prerequisite for the development of new optical materials and complex optical multilayers. A flat supercontinuum (400 nm - 1650 nm), generated by a photonic crystal fiber pumped with a train of kHz nanosecond Q-switched microchip laser pulses at 1064 nm is used for high sensitive cavity ring down (CRD) loss measurements. The supercontinuum based CRD-technique enables the precise determination of the reflectivity of highreflective coatings from R = 0.995 to R = 0.99995 or of the transmission loss of optical materials from τ = 0.005 to τ = 0.00005 with an accuracy better than 2 • 10-6, and covers an extreme wide spectral range of more than 1000 nm.
Proceedings of SPIE | 2016
Tobias Baselt; Christopher Taudt; Bryan Nelsen; Andrés Fabián Lasagni; Peter Hartmann
The use of supercontinuum light sources in different optical measurement methods, like microscopy or optical coherence tomography, has increased significantly compared to classical wideband light sources. The development of various optical measurement techniques benefits from the high brightness and bandwidth, as well as the spatial coherence of these sources. For some applications, only a portion of the broad spectral range can be used. Therefore, an increase of the spectral power density in limited spectral regions would provide a clear advantage over spectral filtering. This study describes a method to increase the spectral power density of supercontinuum sources by amplifying the excitation wavelength inside a nonlinear photonic crystal fiber (PCF). An ytterbium doped photonic crystal fiber was manufactured by a sol-gel process and used in a fiber amplifier setup as the nonlinear fiber medium. In order to characterize the fiber’s optimum operational characteristics, group-velocity dispersion (GVD) measurements were performed on the fiber during the amplification process. For this purpose, a notch-pass mirror was used to launch the radiation of a stabilized laser diode at 976 nm into the fiber sample for pumping. The performance of the fiber was compared with a conventional PCF. Finally, the system as a whole was characterized in reference to common solid state-laser-based photonic supercontinuum light sources. An improvement of the power density up to 7.2 times was observed between 1100 nm to 1380 nm wavelengths.
Smart Sensors, Actuators, and MEMS VII; and Cyber Physical Systems | 2015
Ch. Taudt; A. Augenstein; Tobias Baselt; Heiko Assmann; Andreas Greiner; Edmund Koch; P. Hartmann
In this paper an alternative approach to surface profilometry based on a combined time-spectral domain white-light interferometer is shown. Within the setup a reference interferometer arm contains of a fixed mirror and a material with known dispersion while the object arm is aligned to a sample e.g. a wafer surface. Under the usage of a translation stage different height profiles in the nm - regime are emulated and measured accordingly with the interferometer. The signal analysis and calculation of interesting parameters is performed by a fitting algorithm. This algorithm is based on theoretical considerations on a dispersion affected interferometer which are also shown in the work. The experimental configuration allows a measurement range of 12 μm while a theoretical average resolution of 28 nm is possible. In the results it is observable that the measurement of height changes on a surface with an RMS error of 18 nm at the maximum is possible. In conclusion sources of error and further improvement possibilities are discussed.
Proceedings of SPIE | 2014
Tobias Baselt; Ch. Taudt; P. Hartmann
In recent years the use of supercontinuum light sources has encouraged the development of various optical measurement techniques, like microscopy and optical coherence-tomography. Some disadvantages of common supercontinuum solutions, in particular the rather poor stability and the absence of modulation abilities limit the application potential of this technique. We present a directly controllable all-fiber laser source with appropriate parameters in order to generate a broad supercontinuum spectrum with the aid of microstructured fibers. Through the application of a laser seed-diode, which is driven by a custom built controller to generate nanosecond pulses with repetition rates in the MHz range in a reproducible manner, a direct control of the laser system is enabled. The seedsignal is amplified to the appropriate power level in a 2-step amplification stage. Wide supercontinuum is finally generated by launching the amplified laser pulses into different microstructured fibers. The system has been optimized in terms of stability, power-output, spectral width and beam-quality by employing different laser pulse parameters and several different microstructured fibers. Finally, the system as a whole has been characterized in reference to common solid state-laser-based supercontinuum light sources
Proceedings of SPIE | 2013
Sven Meissner; Peter Cimalla; Björn Fischer; Christopher Taudt; Tobias Baselt; Peter Hartmann; Edmund Koch
Broadband light sources provide a significant benefit for optical coherence tomography (OCT) imaging concerning the axial resolution. Light sources with bandwidths over 200 nm result in an axial resolution up to 2 microns. Such broad band OCT imaging can be achieved utilizing super continuum (SC) light sources. The main important disadvantage of commercial SC light sources is the overall size and the high costs. Therefore, the use of SC light sources in small OCT setups and applications is limited. We present a new small housing and costeffective light source, which is suitable for OCT imaging. The used light source has dimensions of 110 x 160 x 60 mm and covers a wavelength range from 390 nm up to 2500 nm. The light source was coupled in a dual band OCT system. The light is guided into the interferometer and split in reference and sample beam. The superimposed signal is guided to the spectrometer unit, which consists of two spectrometers. This spectrometer system separates the light. One band centered at 800 nm with a full bandwidth of 176 nm and a second band centered at 1250 nm with a full spectral width of 300 nm was extracted. The 800 nm interference signal is detected by a silicon line scan camera and the 1250 nm signal by an indium gallium arsenide linear image sensor. In this test measurement a plastic foil was used as a sample, which is composed of several plastic film layers. Three dimensional images were acquired simultaneous with the dual band OCT setup. The images were acquired at an A-scan rate of 1 kHz. The 1 kHz A-line rate was chosen because so far the optical power of the light source is not optimal for high speed OCT imaging. The source provides 2 mW in the range of 390 nm to 800 nm and 25 mW in the range from 390 nm to 1650 nm. Furthermore, we coupled the light source by a 50:50 optical fiber coupler, which also reduces the overall optical power of the light source within the OCT setup. Nevertheless, we demonstrated that this new small-package and cost-effective light source is very suitable to carry out OCT imaging. The use of this light source can open up new OCT applications, which require OCT setups with very high axial resolution and small footprint.
Proceedings of SPIE | 2017
Tobias Baselt; Christopher Taudt; Bryan Nelsen; Andrés Fabián Lasagni; Peter Hartmann
Supercontinuum light sources provide a high power spectral density with a high spatial coherence. Coherent octavespanning supercontinuum can be generated in photonic crystal fibers (PCFs) by launching short pulses into the fiber. In the field of optical metrology, these light sources are very interesting. For most applications, only a small part of the entire spectrum can be utilized. In biological tissue scattering, absorption and fluorescence limits the usable spectral range. Therefore, an increase of the spectral power density in limited spectral regions would provide a clear advantage over spectral filtering. This study describes a method to increase the spectral power density of supercontinuum sources by amplifying the excitation wavelength inside a nonlinear photonic crystal fiber (PCF). An all-fiber-based setup enables higher output power and power stability. An ytterbium-doped photonic crystal fiber was manufactured by a nanopowder process (drawn by the fiberware GmbH, Germany) and used in a fiber amplifier setup as the nonlinear fiber medium. In order to characterize the fiber’s optimum operational characteristics, group-velocity dispersion (GVD) measurements were performed. The performance of the fiber-based setup was compared with a free space setup. Finally, the system as a whole was characterized in reference to common solid state-laser-based supercontinuum light sources. An improvement of the power density was observed in the spectral range between 1100 nm to 1400 nm.
Proceedings of SPIE | 2016
Ch. Taudt; Tobias Baselt; B. Nelsen; H. Aßmann; Andreas Greiner; Edmund Koch; P. Hartmann
Within this work a scan-free, low-coherence interferometry approach for surface profilometry with nm-precision is presented. The basic setup consist of a Michelson-type interferometer which is powered by a super-continuum light-source (Δλ= 400-1700 nm). The introduction of an element with known dispersion delivers a controlled phase variation which can be detected in the spectral domain and used to reconstruct height differences on a sample. In order to enable scan-free measurements, the interference signal is spectrally decomposed with a grating and imaged onto a two-dimensional detector. One dimension of this detector records spectral, and therefore height information, while the other dimension stores the spatial position of the corresponding height values. In experiments on a height standard, it could be shown that the setup is capable of recording multiple height steps of 101 nm over a range of 500 m with an accuracy of about 11.5 nm. Further experiments on conductive paths of a micro-electro-mechanical systems (MEMS) pressure sensor demonstrated that the approach is also suitable to precisely characterize nanometer-sized structures on production-relevant components. The main advantage of the proposed measurement approach is the possibility to collect precise height information over a line on a surface without the need for scanning. This feature makes it interesting for a production-accompanying metrology.