Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tobias Bonhoeffer is active.

Publication


Featured researches published by Tobias Bonhoeffer.


Nature | 1999

Dendritic spine changes associated with hippocampal long-term synaptic plasticity.

Florian Engert; Tobias Bonhoeffer

Long-term enhancement of synaptic efficacy in the hippocampus is an important model for studying the cellular mechanisms of neuronal plasticity, circuit reorganization, and even learning and memory. Although these long-lasting functional changes are easy to induce, it has been very difficult to demonstrate that they are accompanied or even caused by morphological changes on the subcellular level. Here we combined a local superfusion technique, with two-photon imaging, which allowed us to scrutinize specific regions of the postsynaptic dendrite where we knew that the synaptic changes had to occur. We show that after induction of long-lasting (but not short-lasting) functional enhancement of synapses in area CA1, new spines appear on the postsynaptic dendrite, whereas in control regions on the same dendrite or in slices where long-term potentiation was blocked, no significant spine growth occurred.


Neuron | 1999

Essential role for TrkB receptors in hippocampus-mediated learning.

Liliana Minichiello; Martin Korte; David P. Wolfer; Ralf Kühn; Klaus Unsicker; Vincenzo Cestari; Clelia Rossi-Arnaud; Hans-Peter Lipp; Tobias Bonhoeffer; Rüdiger Klein

Brain-derived neurotrophic factor (BDNF) and its receptor TrkB regulate both short-term synaptic functions and long-term potentiation (LTP) of brain synapses, raising the possibility that BDNF/TrkB may be involved in cognitive functions. We have generated conditionally gene targeted mice in which the knockout of the trkB gene is restricted to the forebrain and occurs only during postnatal development. Adult mutant mice show increasingly impaired learning behavior or inappropriate coping responses when facing complex and/or stressful learning paradigms but succeed in simple passive avoidance learning. Homozygous mutants show impaired LTP at CA1 hippocampal synapses. Interestingly, heterozygotes show a partial but substantial reduction of LTP but appear behaviorally normal. Thus, CA1 LTP may need to be reduced below a certain threshold before behavioral defects become apparent.


Nature Reviews Neuroscience | 2004

Genesis of dendritic spines: insights from ultrastructural and imaging studies

Rafael Yuste; Tobias Bonhoeffer

Dendritic spines are small protrusions from many types of neuron, which receive most of the excitatory inputs to the cell. Spines are thought to have important roles in neural information processing and plasticity, yet we still have a poor understanding of how they emerge during development. Here, we review the developmental generation of dendritic spines, covering recent live imaging experiments and older ultrastructural data. We address the potential role of dendritic filopodia in spine development and recent findings of spinogenesis in adult animals, and conclude by discussing three potential models of spinogenesis.


Neuron | 2004

Bidirectional Activity-Dependent Morphological Plasticity in Hippocampal Neurons

U. Valentin Nägerl; Nicola Eberhorn; Sidney B. Cambridge; Tobias Bonhoeffer

Dendritic spines on pyramidal neurons receive the vast majority of excitatory input and are considered electrobiochemical processing units, integrating and compartmentalizing synaptic input. Following synaptic plasticity, spines can undergo morphological plasticity, which possibly forms the structural basis for long-term changes in neuronal circuitry. Here, we demonstrate that spines on CA1 pyramidal neurons from organotypic slice cultures show bidirectional activity-dependent morphological plasticity. Using two-photon time-lapse microscopy, we observed that low-frequency stimulation induced NMDA receptor-dependent spine retractions, whereas theta burst stimulation led to the formation of new spines. Moreover, without stimulation the number of spine retractions was on the same order of magnitude as the stimulus-induced spine gain or loss. Finally, we found that the ability of neurons to eliminate spines in an activity-dependent manner decreased with developmental age. Taken together, our data show that hippocampal neurons can undergo bidirectional morphological plasticity; spines are formed and eliminated in an activity-dependent way.


Nature Protocols | 2009

Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window

Anthony Holtmaat; Tobias Bonhoeffer; David K. Chow; Ja Chuckowree; Vincenzo De Paola; Sonja B. Hofer; Mark Hübener; Tara Keck; Graham Knott; Wei-Chung Allen Lee; Ricardo Mostany; Thomas D. Mrsic-Flogel; Elly Nedivi; Carlos Portera-Cailliau; Karel Svoboda; Joshua T Trachtenberg; Linda Wilbrecht

To understand the cellular and circuit mechanisms of experience-dependent plasticity, neurons and their synapses need to be studied in the intact brain over extended periods of time. Two-photon excitation laser scanning microscopy (2PLSM), together with expression of fluorescent proteins, enables high-resolution imaging of neuronal structure in vivo. In this protocol we describe a chronic cranial window to obtain optical access to the mouse cerebral cortex for long-term imaging. A small bone flap is replaced with a coverglass, which is permanently sealed in place with dental acrylic, providing a clear imaging window with a large field of view (∼0.8–12 mm2). The surgical procedure can be completed within ∼1 h. The preparation allows imaging over time periods of months with arbitrary imaging intervals. The large size of the imaging window facilitates imaging of ongoing structural plasticity of small neuronal structures in mice, with low densities of labeled neurons. The entire dendritic and axonal arbor of individual neurons can be reconstructed.


Neuron | 2002

Mechanism of TrkB-Mediated Hippocampal Long-Term Potentiation

Liliana Minichiello; Anna Maria Calella; Diego Medina; Tobias Bonhoeffer; Rüdiger Klein; Martin Korte

The TrkB receptor tyrosine kinase and its ligand, BDNF, have an essential role in certain forms of synaptic plasticity. However, the downstream pathways required to mediate these functions are unknown. We have studied mice with a targeted mutation in either the Shc or the phospholipase Cgamma (PLCgamma) docking sites of TrkB (trkB(SHC/SHC) and trkB(PLC/PLC) mice). We found that hippocampal long-term potentiation was impaired in trkB(PLC/PLC) mice, but not trkB(SHC/SHC) mice. BDNF stimulation of primary neurons derived from trkB(PLC/PLC) mice fully retained their ability to activate MAP kinases, whereas induction of CREB and CaMKIV phosphorylation was strongly impaired. The opposite effect was observed in trkB(SHC/SHC) neurons, suggesting that MAPKs and CREB act in parallel pathways. Our results provide genetic evidence that TrkB mediates hippocampal plasticity via recruitment of PLCgamma, and by subsequent phosphorylation of CaMKIV and CREB.


Nature Methods | 2008

A genetically encoded calcium indicator for chronic in vivo two-photon imaging

Marco Mank; Alexandre Ferrão Santos; Stephan Direnberger; Thomas D. Mrsic-Flogel; Sonja B. Hofer; Valentin Stein; Thomas Hendel; Dierk F. Reiff; Christiaan N. Levelt; Alexander Borst; Tobias Bonhoeffer; Mark Hübener; Oliver Griesbeck

Neurons in the nervous system can change their functional properties over time. At present, there are no techniques that allow reliable monitoring of changes within identified neurons over repeated experimental sessions. We increased the signal strength of troponin C–based calcium biosensors in the low-calcium regime by mutagenesis and domain rearrangement within the troponin C calcium binding moiety to generate the indicator TN-XXL. Using in vivo two-photon ratiometric imaging, we show that TN-XXL exhibits enhanced fluorescence changes in neurons of flies and mice. TN-XXL could be used to obtain tuning curves of orientation-selective neurons in mouse visual cortex measured repeatedly over days and weeks. Thus, the genetically encoded calcium indicator TN-XXL allows repeated imaging of response properties from individual, identified neurons in vivo, which will be crucial for gaining new insights into cellular mechanisms of plasticity, regeneration and disease.


Nature | 2009

Experience leaves a lasting structural trace in cortical circuits

Sonja B. Hofer; Thomas D. Mrsic-Flogel; Tobias Bonhoeffer; Mark Hübener

Sensory experiences exert a powerful influence on the function and future performance of neuronal circuits in the mammalian neocortex. Restructuring of synaptic connections is believed to be one mechanism by which cortical circuits store information about the sensory world. Excitatory synaptic structures, such as dendritic spines, are dynamic entities that remain sensitive to alteration of sensory input throughout life. It remains unclear, however, whether structural changes at the level of dendritic spines can outlast the original experience and thereby provide a morphological basis for long-term information storage. Here we follow spine dynamics on apical dendrites of pyramidal neurons in functionally defined regions of adult mouse visual cortex during plasticity of eye-specific responses induced by repeated closure of one eye (monocular deprivation). The first monocular deprivation episode doubled the rate of spine formation, thereby increasing spine density. This effect was specific to layer-5 cells located in binocular cortex, where most neurons increase their responsiveness to the non-deprived eye. Restoring binocular vision returned spine dynamics to baseline levels, but absolute spine density remained elevated and many monocular deprivation-induced spines persisted during this period of functional recovery. However, spine addition did not increase again when the same eye was closed for a second time. This absence of structural plasticity stands out against the robust changes of eye-specific responses that occur even faster after repeated deprivation. Thus, spines added during the first monocular deprivation experience may provide a structural basis for subsequent functional shifts. These results provide a strong link between functional plasticity and specific synaptic rearrangements, revealing a mechanism of how prior experiences could be stored in cortical circuits.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Live-cell imaging of dendritic spines by STED microscopy

U. Valentin Nägerl; Katrin I. Willig; Birka Hein; Stefan W. Hell; Tobias Bonhoeffer

Time lapse fluorescence imaging has become one of the most important approaches in neurobiological research. In particular, both confocal and two-photon microscopy have been used to study activity-dependent changes in synaptic morphology. However, the diffraction-limited resolution of light microscopy is often inadequate, forcing researchers to complement the live cell imaging strategy by EM. Here, we report on the first use of a far-field optical technique with subdiffraction resolution to noninvasively image activity-dependent morphological plasticity of dendritic spines. Specifically we show that time lapse stimulated emission depletion imaging of dendritic spines of YFP-positive hippocampal neurons in organotypic slices outperforms confocal microscopy in revealing important structural details. The technique substantially improves the quantification of morphological parameters, such as the neck width and the curvature of the heads of spines, which are thought to play critical roles for the function and plasticity of synaptic connections.


Neuron | 2001

Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity.

Ilona C Grunwald; Martin Korte; David P. Wolfer; George A. Wilkinson; Klaus Unsicker; Hans-Peter Lipp; Tobias Bonhoeffer; Rüdiger Klein

During development, Eph receptors mediate the repulsive axon guidance function of ephrins, a family of membrane attached ligands with their own receptor-like signaling potential. In cultured glutamatergic neurons, EphB2 receptors were recently shown to associate with NMDA receptors at synaptic sites and were suggested to play a role in synaptogenesis. Here we show that Eph receptor stimulation in cultured neurons modulates signaling pathways implicated in synaptic plasticity, suggesting cross-talk with NMDA receptor-activated pathways. Mice lacking EphB2 have normal hippocampal synapse morphology, but display defects in synaptic plasticity. In EphB2(-/-) hippocampal slices, protein synthesis-dependent long-term potentiation (LTP) was impaired, and two forms of synaptic depression were completely extinguished. Interestingly, targeted expression of a carboxy-terminally truncated form of EphB2 rescued the EphB2 null phenotype, indicating that EphB2 kinase signaling is not required for these EphB2-mediated functions.

Collaboration


Dive into the Tobias Bonhoeffer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Korte

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amiram Grinvald

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Sonja B. Hofer

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge