Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tobias Brosch is active.

Publication


Featured researches published by Tobias Brosch.


affective computing and intelligent interaction | 2011

Multiple classifier systems for the classificatio of audio-visual emotional states

Michael Glodek; Stephan Tschechne; Georg Layher; Martin Schels; Tobias Brosch; Stefan Scherer; Markus Kächele; Miriam Schmidt; Heiko Neumann; Günther Palm; Friedhelm Schwenker

Research activities in the field of human-computer interaction increasingly addressed the aspect of integrating some type of emotional intelligence. Human emotions are expressed through different modalities such as speech, facial expressions, hand or body gestures, and therefore the classification of human emotions should be considered as a multimodal pattern recognition problem. The aim of our paper is to investigate multiple classifier systems utilizing audio and visual features to classify human emotional states. For that a variety of features have been derived. From the audio signal the fundamental frequency, LPCand MFCC coefficients, and RASTA-PLP have been used. In addition to that two types of visual features have been computed, namely form and motion features of intermediate complexity. The numerical evaluation has been performed on the four emotional labels Arousal, Expectancy, Power, Valence as defined in the AVEC data set. As classifier architectures multiple classifier systems are applied, these have been proven to be accurate and robust against missing and noisy data.


Frontiers in Neuroscience | 2015

On event-based optical flow detection.

Tobias Brosch; Stephan Tschechne; Heiko Neumann

Event-based sensing, i.e., the asynchronous detection of luminance changes, promises low-energy, high dynamic range, and sparse sensing. This stands in contrast to whole image frame-wise acquisition by standard cameras. Here, we systematically investigate the implications of event-based sensing in the context of visual motion, or flow, estimation. Starting from a common theoretical foundation, we discuss different principal approaches for optical flow detection ranging from gradient-based methods over plane-fitting to filter based methods and identify strengths and weaknesses of each class. Gradient-based methods for local motion integration are shown to suffer from the sparse encoding in address-event representations (AER). Approaches exploiting the local plane like structure of the event cloud, on the other hand, are shown to be well suited. Within this class, filter based approaches are shown to define a proper detection scheme which can also deal with the problem of representing multiple motions at a single location (motion transparency). A novel biologically inspired efficient motion detector is proposed, analyzed and experimentally validated. Furthermore, a stage of surround normalization is incorporated. Together with the filtering this defines a canonical circuit for motion feature detection. The theoretical analysis shows that such an integrated circuit reduces motion ambiguity in addition to decorrelating the representation of motion related activations.


Neural Networks | 2014

Interaction of feedforward and feedback streams in visual cortex in a firing-rate model of columnar computations

Tobias Brosch; Heiko Neumann

Visual sensory input stimuli are rapidly processed along bottom-up feedforward cortical streams. Beyond such driving streams neurons in higher areas provide information that is re-entered into the representations and responses at the earlier stages of processing. The precise mechanisms and underlying functionality of such associative feedforward/feedback interactions are not resolved. This work develops a neuronal circuit at a level mimicking cortical columns with response properties linked to single cell recordings. The proposed model constitutes a coarse-grained model with gradual firing-rate responses which accounts for physiological in vitro recordings from mammalian cortical cells. It is shown that the proposed population-based circuit with gradual firing-rate dynamics generates responses like those of detailed biophysically realistic multi-compartment spiking models. The results motivate using a coarse-grained mechanism for large-scale neural network modeling and simulations of visual cortical mechanisms. They further provide insights about how local recurrent loops change the gain of modulating feedback signals.


Neural Computation | 2014

Computing with a canonical neural circuits model with pool normalization and modulating feedback

Tobias Brosch; Heiko Neumann

Evidence suggests that the brain uses an operational set of canonical computations like normalization, input filtering, and response gain enhancement via reentrant feedback. Here, we propose a three-stage columnar architecture of cascaded model neurons to describe a core circuit combining signal pathways of feedforward and feedback processing and the inhibitory pooling of neurons to normalize the activity. We present an analytical investigation of such a circuit by first reducing its detail through the lumping of initial feedforward response filtering and reentrant modulating signal amplification. The resulting excitatory-inhibitory pair of neurons is analyzed in a 2D phase-space. The inhibitory pool activation is treated as a separate mechanism exhibiting different effects. We analyze subtractive as well as divisive (shunting) interaction to implement center-surround mechanisms that include normalization effects in the characteristics of real neurons. Different variants of a core model architecture are derived and analyzed—in particular, individual excitatory neurons (without pool inhibition), the interaction with an inhibitory subtractive or divisive (i.e., shunting) pool, and the dynamics of recurrent self-excitation combined with divisive inhibition. The stability and existence properties of these model instances are characterized, which serve as guidelines to adjust these properties through proper model parameterization. The significance of the derived results is demonstrated by theoretical predictions of response behaviors in the case of multiple interacting hypercolumns in a single and in multiple feature dimensions. In numerical simulations, we confirm these predictions and provide some explanations for different neural computational properties. Among those, we consider orientation contrast-dependent response behavior, different forms of attentional modulation, contrast element grouping, and the dynamic adaptation of the silent surround in extraclassical receptive field configurations, using only slight variations of the same core reference model.


PLOS Computational Biology | 2015

Reinforcement Learning of Linking and Tracing Contours in Recurrent Neural Networks.

Tobias Brosch; Heiko Neumann; Pieter R. Roelfsema

The processing of a visual stimulus can be subdivided into a number of stages. Upon stimulus presentation there is an early phase of feedforward processing where the visual information is propagated from lower to higher visual areas for the extraction of basic and complex stimulus features. This is followed by a later phase where horizontal connections within areas and feedback connections from higher areas back to lower areas come into play. In this later phase, image elements that are behaviorally relevant are grouped by Gestalt grouping rules and are labeled in the cortex with enhanced neuronal activity (object-based attention in psychology). Recent neurophysiological studies revealed that reward-based learning influences these recurrent grouping processes, but it is not well understood how rewards train recurrent circuits for perceptual organization. This paper examines the mechanisms for reward-based learning of new grouping rules. We derive a learning rule that can explain how rewards influence the information flow through feedforward, horizontal and feedback connections. We illustrate the efficiency with two tasks that have been used to study the neuronal correlates of perceptual organization in early visual cortex. The first task is called contour-integration and demands the integration of collinear contour elements into an elongated curve. We show how reward-based learning causes an enhancement of the representation of the to-be-grouped elements at early levels of a recurrent neural network, just as is observed in the visual cortex of monkeys. The second task is curve-tracing where the aim is to determine the endpoint of an elongated curve composed of connected image elements. If trained with the new learning rule, neural networks learn to propagate enhanced activity over the curve, in accordance with neurophysiological data. We close the paper with a number of model predictions that can be tested in future neurophysiological and computational studies.


BICT '14 Proceedings of the 8th International Conference on Bioinspired Information and Communications Technologies | 2014

On event-based motion detection and integration

Stephan Tschechne; Tobias Brosch; Roman Sailer; Nora von Egloffstein; Luma Issa Abdul-Kreem; Heiko Neumann

Event-based vision sensors sample individual pixels at a much higher temporal resolution and provide a representation of the visual input available in their receptive fields that is temporally independent of neighboring pixels. The information available on pixel level for subsequent processing stages is reduced to representations of changes in the local intensity function. In this paper we present theoretical implications of this condition with respect to the structure of light fields for stationary observers and local moving contrasts in the luminance function. On this basis we derive several constraints on what kind of information can be extracted from event-based sensory acquisition using the address-event-representation (AER) principle. We discuss how subsequent visual mechanisms can build upon such representations in order to integrate motion and static shape information. On this foundation we present approaches for motion detection and integration in a neurally inspired model that demonstrates the interaction of early and intermediate stages of visual processing. Results replicating experimental findings demonstrate the abilities of the initial and subsequent stages of the model in the domain of motion processing.


international conference on neural information processing | 2012

The brain's sequential parallelism: perceptual decision-making and early sensory responses

Tobias Brosch; Heiko Neumann

Multi-stage decision tasks require the determination of intermediate results in order to perform consecutive decision steps. Electrophysiological recordings in sensory, parietal, and pre-frontal cortical areas have demonstrated that different response characteristics and timings at the neuron level provide key mechanisms to implement characteristic functionalities. We propose a hybrid neural model architecture that accounts for such findings and quantitatively reproduces the timing of such responses. We demonstrate by numerical simulations how the model accounts for feature-dependent decisions and how these are sequentialized during mutual interactions of pools of neurons in different cortical areas. Feedback from higher-level areas to early sensory stages of processing establishes a link between mechanisms involved in response integration and target selection to representations of sensory input.


Frontiers in Neurorobotics | 2017

Real-Time Biologically Inspired Action Recognition from Key Poses Using a Neuromorphic Architecture

Georg Layher; Tobias Brosch; Heiko Neumann

Intelligent agents, such as robots, have to serve a multitude of autonomous functions. Examples are, e.g., collision avoidance, navigation and route planning, active sensing of its environment, or the interaction and non-verbal communication with people in the extended reach space. Here, we focus on the recognition of the action of a human agent based on a biologically inspired visual architecture of analyzing articulated movements. The proposed processing architecture builds upon coarsely segregated streams of sensory processing along different pathways which separately process form and motion information (Layher et al., 2014). Action recognition is performed in an event-based scheme by identifying representations of characteristic pose configurations (key poses) in an image sequence. In line with perceptual studies, key poses are selected unsupervised utilizing a feature-driven criterion which combines extrema in the motion energy with the horizontal and the vertical extendedness of a body shape. Per class representations of key pose frames are learned using a deep convolutional neural network consisting of 15 convolutional layers. The network is trained using the energy-efficient deep neuromorphic networks (Eedn) framework (Esser et al., 2016), which realizes the mapping of the trained synaptic weights onto the IBM Neurosynaptic System platform (Merolla et al., 2014). After the mapping, the trained network achieves real-time capabilities for processing input streams and classify input images at about 1,000 frames per second while the computational stages only consume about 70 mW of energy (without spike transduction). Particularly regarding mobile robotic systems, a low energy profile might be crucial in a variety of application scenarios. Cross-validation results are reported for two different datasets and compared to state-of-the-art action recognition approaches. The results demonstrate, that (I) the presented approach is on par with other key pose based methods described in the literature, which select key pose frames by optimizing classification accuracy, (II) compared to the training on the full set of frames, representations trained on key pose frames result in a higher confidence in class assignments, and (III) key pose representations show promising generalization capabilities in a cross-dataset evaluation.


Frontiers in Neuroscience | 2016

Reversal Learning in Humans and Gerbils: Dynamic Control Network Facilitates Learning

Christian Jarvers; Tobias Brosch; André Brechmann; Marie L. Woldeit; Andreas L. Schulz; Frank W. Ohl; Marcel Lommerzheim; Heiko Neumann

Biologically plausible modeling of behavioral reinforcement learning tasks has seen great improvements over the past decades. Less work has been dedicated to tasks involving contingency reversals, i.e., tasks in which the original behavioral goal is reversed one or multiple times. The ability to adjust to such reversals is a key element of behavioral flexibility. Here, we investigate the neural mechanisms underlying contingency-reversal tasks. We first conduct experiments with humans and gerbils to demonstrate memory effects, including multiple reversals in which subjects (humans and animals) show a faster learning rate when a previously learned contingency re-appears. Motivated by recurrent mechanisms of learning and memory for object categories, we propose a network architecture which involves reinforcement learning to steer an orienting system that monitors the success in reward acquisition. We suggest that a model sensory system provides feature representations which are further processed by category-related subnetworks which constitute a neural analog of expert networks. Categories are selected dynamically in a competitive field and predict the expected reward. Learning occurs in sequentialized phases to selectively focus the weight adaptation to synapses in the hierarchical network and modulate their weight changes by a global modulator signal. The orienting subsystem itself learns to bias the competition in the presence of continuous monotonic reward accumulation. In case of sudden changes in the discrepancy of predicted and acquired reward the activated motor category can be switched. We suggest that this subsystem is composed of a hierarchically organized network of dis-inhibitory mechanisms, dubbed a dynamic control network (DCN), which resembles components of the basal ganglia. The DCN selectively activates an expert network, corresponding to the current behavioral strategy. The trace of the accumulated reward is monitored such that large sudden deviations from the monotonicity of its evolution trigger a reset after which another expert subnetwork can be activated—if it has already been established before—or new categories can be recruited and associated with novel behavioral patterns.


international conference on artificial neural networks | 2013

Attention-Gated Reinforcement Learning in Neural NetworksA Unified View

Tobias Brosch; Friedhelm Schwenker; Heiko Neumann

Learning in the brain is associated with changes of connection strengths between neurons. Here, we consider neural networks with output units for each possible action. Training is performed by giving rewards for correct actions. A major problem in effective learning is to assign credit to units playing a decisive role in the stimulus-response mapping. Previous work suggested an attentional feedback signal in combination with a global reinforcement signal to determine plasticity at units in earlier processing levels. However, it could not learn from delayed rewards (e.g., a robot could escape from fire but not walk through it to rescue a person). Based on the AGREL framework, we developed a new attention-gated learning scheme that makes use of delayed rewards. Finally, we show a close relation to standard error backpropagation.

Collaboration


Dive into the Tobias Brosch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge