Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tobias D. Henning is active.

Publication


Featured researches published by Tobias D. Henning.


Radiology | 2010

Breast cancers: MR imaging of folate-receptor expression with the folate-specific nanoparticle P1133.

Reinhard Meier; Tobias D. Henning; Sophie Boddington; Sidhartha Tavri; Sandeep Arora; Guido Piontek; Martina Rudelius; Claire Corot; Heike E. Daldrup-Link

PURPOSE To assess the capability of the folate receptor (FR)-targeted ultrasmall superparamagnetic iron oxide (USPIO) P1133 to provide FR-specific enhancement of breast cancers on magnetic resonance (MR) images. MATERIALS AND METHODS This study was approved by the institutional Animal Care and Use Committee. The FR-targeted contrast agent P1133 was incubated with various FR-positive human breast cancer cell lines, with and without free folic acid (FFA) as a competitor. Labeling efficiencies were evaluated with MR imaging and inductively coupled plasma mass spectrometry. Subsequently, six athymic rats with implanted FR-positive MDA-MB-231 breast cancers underwent MR imaging at 3 T before and up to 1 hour and 24 hours after injection of P1133. Six athymic rats with implanted FR-positive MDA-MB-231 cancers injected with the non-FR-targeted USPIO P904 and nine athymic rats with implanted FR-negative A549 lung cancers injected with P1133 (n = 6) or P904 (n = 3) served as controls. Data of the in vitro studies were compared for significant differences with the Wilcoxon test for two independent samples. Tumor signal-to-noise-ratios (SNRs) were compared between different experimental groups by using the Kruskal-Wallis test and were correlated with histopathologic findings. Differences with P < .05 were considered significant. RESULTS FR-positive breast cancer cells showed a significant P1133 uptake which was inhibited by FFA. MDA-MB-231 cells showed the highest level of P1133 uptake and the strongest T2 effect on MR images. In vivo, all tumors showed an initial perfusion effect. At 24 hours after injection, only MDA-MB-231 tumors injected with P1133 showed significantly decreased SNR data compared with baseline data (P < .05). MR findings were confirmed by using histopathologic findings. CONCLUSION The FR-targeted USPIO P1133 demonstrates a specific retention in FR-positive breast cancers. Because FR expression correlates with tumor aggressiveness and prognosis, persistent P1133 tumor enhancement may be used as a noninvasive indicator for tumors with poor outcome.


European Radiology | 2007

MR imaging of therapy-induced changes of bone marrow

Heike E. Daldrup-Link; Tobias D. Henning; Thomas M. Link

MR imaging of bone marrow infiltration by hematologic malignancies provides non-invasive assays of bone marrow cellularity and vascularity to supplement the information provided by bone marrow biopsies. This article will review the MR imaging findings of bone marrow infiltration by hematologic malignancies with special focus on treatment effects. MR imaging findings of the bone marrow after radiation therapy and chemotherapy will be described. In addition, changes in bone marrow microcirculation and metabolism after anti-angiogenesis treatment will be reviewed. Finally, new specific imaging techniques for the depiction of regulatory events that control blood vessel growth and cell proliferation will be discussed. Future developments are directed to yield comprehensive information about bone marrow structure, function and microenvironment.


American Journal of Roentgenology | 2007

Volumetric Quantitative CT of the Spine and Hip Derived from Contrast-Enhanced MDCT: Conversion Factors

Jan S. Bauer; Tobias D. Henning; Dirk Mueller; Ying Lu; Sharmila Majumdar; Thomas M. Link

OBJECTIVE The purposes of this study were to perform volumetric quantitative CT (QCT) of the spine and hip using nondedicated contrast-enhanced standard MDCT data sets and to derive a conversion factor for bone mineral density (BMD) assessment based on dedicated volumetric QCT data sets. SUBJECTS AND METHODS Forty postmenopausal women with a mean +/- SD age of 71 +/- 9 years underwent routine contrast-enhanced abdominal and pelvic MDCT. Before this imaging examination, standard volumetric QCT of the spine (L1-L3, n = 40) and hip (n = 21) was performed. Relations between QCT and contrast-enhanced MDCT findings were assessed with linear regression analysis. RESULTS Mean lumbar BMD was 84.1 +/- 35.8 mg/mL, and mean femoral BMD was 0.62 +/- 0.12 g/cm2, as determined with QCT. Contrast-enhancement values with MDCT were on average 30.3% higher than those of QCT in the spine and 2.3% higher in the proximal femur (p < 0.05). Based on linear regression, a correlation coefficient of r = 0.98 was calculated for lumbar BMD with the equation BMD(QCT) = 0.96xBMD(MDCT) - 20.9 mg/mL. A coefficient of r = 0.99 was calculated for the proximal femur with the equation BMD(QCT) = 0.99xBMD(MDCT) - 12 mg/cm2 (p < 0.01). In 17 of 40 patients, 33 vertebral fractures were found. The dedicated QCT and enhanced MDCT data sets did not show a significant difference (p > 0.05) between patients with fractures and those without fractures. CONCLUSION With the conversion factors, reliable volumetric BMD measurements can be calculated for the hip and the spine from routine abdominal and pelvic MDCT data sets.


Medical Image Analysis | 2010

Atlas-based whole-body segmentation of mice from low-contrast Micro-CT data

Martin Baiker; Julien Milles; Jouke Dijkstra; Tobias D. Henning; Axel W. Weber; Ivo Que; Eric L. Kaijzel; Clemens W.G.M. Löwik; Johan H. C. Reiber; Boudewijn P. F. Lelieveldt

This paper presents a fully automated method for atlas-based whole-body segmentation in non-contrast-enhanced Micro-CT data of mice. The position and posture of mice in such studies may vary to a large extent, complicating data comparison in cross-sectional and follow-up studies. Moreover, Micro-CT typically yields only poor soft-tissue contrast for abdominal organs. To overcome these challenges, we propose a method that divides the problem into an atlas constrained registration based on high-contrast organs in Micro-CT (skeleton, lungs and skin), and a soft tissue approximation step for low-contrast organs. We first present a modification of the MOBY mouse atlas (Segars et al., 2004) by partitioning the skeleton into individual bones, by adding anatomically realistic joint types and by defining a hierarchical atlas tree description. The individual bones as well as the lungs of this adapted MOBY atlas are then registered one by one traversing the model tree hierarchy. To this end, we employ the Iterative Closest Point method and constrain the Degrees of Freedom of the local registration, dependent on the joint type and motion range. This atlas-based strategy renders the method highly robust to exceptionally large postural differences among scans and to moderate pathological bone deformations. The skin of the torso is registered by employing a novel method for matching distributions of geodesic distances locally, constrained by the registered skeleton. Because of the absence of image contrast between abdominal organs, they are interpolated from the atlas to the subject domain using Thin-Plate-Spline approximation, defined by correspondences on the already established registration of high-contrast structures (bones, lungs and skin). We extensively evaluate the proposed registration method, using 26 non-contrast-enhanced Micro-CT datasets of mice, and the skin registration and organ interpolation, using contrast-enhanced Micro-CT datasets of 15 mice. The posture and shape varied significantly among the animals and the data was acquired in vivo. After registration, the mean Euclidean distance was less than two voxel dimensions for the skeleton and the lungs respectively and less than one voxel dimension for the skin. Dice coefficients of volume overlap between manually segmented and interpolated skeleton and organs vary between 0.47+/-0.08 for the kidneys and 0.73+/-0.04 for the brain. These experiments demonstrate the methods effectiveness for overcoming exceptionally large variations in posture, yielding acceptable approximation accuracy even in the absence of soft-tissue contrast in in vivo Micro-CT data without requiring user initialization.


Contrast Media & Molecular Imaging | 2009

The influence of ferucarbotran on the chondrogenesis of human mesenchymal stem cells

Tobias D. Henning; Elizabeth J. Sutton; Anne Kim; Daniel Golovko; Andrew E. Horvai; Larry Ackerman; Barbara Sennino; Donald M. McDonald; Jeffrey C. Lotz; Heike E. Daldrup-Link

For in vivo applications of magnetically labeled stem cells, biological effects of the labeling procedure have to be precluded. This study evaluates the effect of different ferucarbotran cell labeling protocols on chondrogenic differentiation of human mesenchymal stem cells (hMSC) as well as their implications for MR imaging. hMSC were labeled with ferucarbotran using various protocols: cells were labeled with 100 microg Fe/ml for 4 and 18 h and additional samples were cultured for 6 or 12 days after the 18 h labeling. Supplementary samples were labeled by transfection with protamine sulfate. Iron uptake was quantified by ICP-spectrometry and labeled cells were investigated by transmission electron microscopy and by immunostaining for ferucarbotran. The differentiation potential of labeled cells was compared with unlabeled controls by staining with Alcian blue and Hematoxylin and Eosin, then quantified by measurements of glucosaminoglycans (GAG). Contrast agent effect at 3 T was investigated on days 1 and 14 of chondrogenic differentiation by measuring signal-to-noise ratios on T(2)-SE and T(2)*-GE sequences. Iron uptake was significant for all labeling protocols (p < 0.05). The uptake was highest after transfection with protamine sulfate (25.65 +/- 3.96 pg/cell) and lowest at an incubation time of 4 h without transfection (3.21 +/- 0.21 pg/cell). While chondrogenic differentiation was decreased using all labeling protocols, the decrease in GAG synthesis was not significant after labeling for 4 h without transfection. After labeling by simple incubation, chondrogenesis was found to be dose-dependent. MR imaging showed markedly lower SNR values of all labeled cells compared with the unlabeled controls. This contrast agent effect persisted for 14 days and the duration of differentiation. Magnetic labeling of hMSC with ferucarbotran inhibits chondrogenesis in a dose-dependent manner when using simple incubation techniques. When decreasing the incubation time to 4 h, inhibition of chondrogenesis was not significant.


Anti-Cancer Drugs | 2004

Relevance of tumor microenvironment for progression, therapy and drug development

Tobias D. Henning; Michael Kraus; Martin Brischwein; Angela M. Otto; Bernhard Wolf

Tumor interstitium exhibits a microenvironment that differs from corresponding normal tissues. Tumor phenotype shows, for example, an elevated intracellular pH (pHi), a lowered extracellular pH (pHe), a low oxygen concentration and low glucose levels. These differences are caused by cell biological (so called intrinsic) factors, e.g. a higher acidification rate, as well as by more systemic (extrinsic) factors, e.g. poor tumor vascularization. They represent important factors for invasiveness, immune suppression and proliferation, and they imply possibilities for diagnosis, prognosis and therapy. We have developed an experimental data-based computer model, which has simulated the potential role of metabolic effects on tumor progression. We show an experiment on cellular metabolism demonstrating the immunosuppressive impact of low pHe on peripheral blood mononuclear cells. Finally, we review important findings on the tumor microenvironment leading to possibilities for therapy which are currently evolving and which promise higher effectiveness for cancer therapy.


European Journal of Radiology | 2009

MR imaging of tumor angiogenesis using sterically stabilized Gd-DTPA liposomes targeted to CD105

D. Zhang; Xiao-Yuan Feng; Tobias D. Henning; Li Wen; Wei-Yue Lu; Hong Pan; Xing Wu; Liguang Zou

AIM To depict tumor angiogenesis via the expression of CD105 in tumor-bearing rats using Gd-DTPA liposomes targeted to CD105 (CD105-Gd-SLs) on MR imaging. MATERIALS AND METHODS Three Gd-DTPA liposomal nanoparticles were prepared in our trial: liposomes entrapping Gd-DTPA (Gd-SLs), Gd-SLs conjugated to immunoglobulins (IgG-Gd-SLs) and CD105-Gd-SLs. Forty glioma-bearing rats were randomized into four groups: (a) Gd-DTPA; (b) Gd-SLs; (c) IgG-Gd-SLs; (d) CD105-Gd-SLs. Axial T1WI MRI images were collected at baseline and repeated at 5, 30, 60 and 120 min post-intravenous injection of Gd-DTPA or liposome. Enhancement features and contrast-to-noise ratio of each group were analyzed. After imaging, tumors were resected for immunohistochemistry and immunofluorescence staining to assess vascularity and angiogenesis. RESULTS The four groups showed different enhancement features. The enhancement area was restricted for group CD105-Gd-SLs, while diffused for the other three. The degree of enhancement over time varied: group Gd-DTPA showed an early contrast enhancement at instant after injection with a peak at 30 min and a decline to baseline values at 60 min. In group CD105-Gd-SLs, the signal intensity (SI) continuously increased over 120 min. In groups IgG-Gd-SLs and Gd-SLs the SI peaked at 60 min, followed by a minor decrease for IgG-Gd-SLs and a rapid decrease for Gd-SLs almost to baseline. Immunohistochemistry and immunofluorescence showed that the enhancement in the CD105-Gd-SLs group resulted mainly from new microvessels. While in the other three groups, mature microvessels and new microvasculature resulted in the enhancement of the tumor. CONCLUSION CD105-Gd-SLs can be used to detect early tumor angiogenesis on MR images. This might provide a means to non-invasively reveal a malignant phenotype of extracerebral F98 tumor and evaluate its progression.


Magnetic Resonance in Medicine | 2009

Relaxation effects of ferucarbotran-labeled mesenchymal stem cells at 1.5T and 3T: Discrimination of viable from lysed cells

Tobias D. Henning; Michael F. Wendland; Daniel Golovko; Elizabeth J. Sutton; Barbara Sennino; Farbod Malek; Jan S. Bauer; Donald M. McDonald; Heike E. Daldrup-Link

Human mesenchymal stem cells (hMSCs) were labeled with Ferucarbotran by simple incubation and cultured for up to 14 d. Iron content was determined by spectrometry and the intracellular localization of the contrast agent uptake was studied by electron and confocal microscopy. At various time points after labeling, ranging from 1 to 14 d, samples with viable or lysed labeled hMSCs, as well as nonlabeled controls, underwent MRI. Spin‐echo (SE) and gradient‐echo (GE) sequences with multiple TRs and TEs were used at 1.5T and 3T on a clinical scanner. Spectrometry showed an initial iron oxide uptake of 7.08 pg per cell. Microscopy studies revealed lysosomal compartmentalization. Contrast agent effects of hMSCs were persistent for up to 14 d after labeling. A marked difference in the T2 effect of compartmentalized iron oxides compared to free iron oxides was found on T2‐weighted sequences, but not on T  *2 ‐weighted sequences. The observed differences may be explained by the loss of compartmentalization of iron oxide particles, the uniformity of distribution, and the subsequent increase in dephasing of protons on SE images. These results show that viable cells with compartmentalized iron oxides may—in principle—be distinguished from lysed cells or released iron oxides. Magn Reson Med, 2009.


Molecular Imaging | 2009

Optical Imaging of Cellular Immunotherapy against Prostate Cancer

Sidhartha Tavri; Priyanka Jha; Reinhard Meier; Tobias D. Henning; Tina Müller; Daniel Hostetter; Christiane Knopp; Magnus Johansson; Verena Reinhart; Sophie Boddington; Akhilesh K. Sista; Winfried S. Wels; Heike E. Daldrup-Link

The purpose of this study was to track fluorophore-labeled, tumor-targeted natural killer (NK) cells to human prostate cancer xenografts with optical imaging (OI). NK-92-scFv(MOC31)-zeta cells targeted to the epithelial cell adhesion molecule (EpCAM) antigen on prostate cancer cells and nontargeted NK-92 parental cells were labeled with the near-infrared dye DiD (1,1-dioctadecyl-3,3,3,3-tetramethylindodicarbocyanine). The fluorescence, viability, and cytotoxicity of the labeled cells were evaluated. Subsequently, 12 athymic rats with prostate cancer xenografts underwent OI scans before and up to 24 hours postinjection of DiD-labeled parental NK-92 cells or NK-92-scFv(MOC31)-zeta cells. The tumor fluorescence intensity was measured and compared between pre- and postinjection scans and between both groups using t-tests. OI data were confirmed with fluorescence microscopy. In vitro studies demonstrated a significant increase in the fluorescence of labeled cells compared with unlabeled controls, which persisted over a period of 24 hours without any significant change in the viability. In vivo studies demonstrated a significant increase in tumor fluorescence at 24 hours postinjection of tumor-targeted NK-92-scFv(MOC31)-zeta cells but not parental NK cells. Ex vivo OI scans and fluorescence microscopy confirmed a specific accumulation of NK-92-scFv(MOC31)-zeta cells but not parental NK cells in the tumors. Tumor-targeted NK-92-scFv(MOC31)-zeta cells could be tracked to prostate cancer xenografts with OI.


Investigative Radiology | 2008

Magnetic resonance imaging of the ankle at 3.0 Tesla and 1.5 Tesla in human cadaver specimens with artificially created lesions of cartilage and ligaments.

Jan S. Bauer; Cameron Barr; Tobias D. Henning; David Malfair; C. Benjamin Ma; Lynne S. Steinbach; Thomas M. Link

Purpose:To compare magnetic resonance imaging of the ankle joint at 1.5 Tesla (T) and 3.0 T in the assessment of cartilage and ligament pathology in fresh human cadaver specimens. Materials and Methods:The study was performed in line with institutional and legislative requirements; all donors had dedicated their body for educational and research purposes before death. Thirteen fresh human cadaver ankle joints were imaged at 1.5 T and 3.0 T using an optimized clinical ankle protocol consisting of T1-weighted (T1-w), fat-saturated (fs) T2-w, and short τ inversion recovery fast spinecho (FSE) sequences. For dedicated cartilage imaging, fs-intermediate (IM)-w FSE, fs-spoiled gradient echo, and balanced free precession steady state sequences were acquired. Artificial cartilage and ligament lesions were created in 6 and 5 specimens, respectively. MR imaging was repeated in those ankles. Four radiologists independently assessed pathology in all image datasets. Macroscopic findings after dissection served as a reference standard. Results:Sensitivities and ROC-values were higher at 3.0 T for detecting cartilage pathology (sensitivity up to 0.71 at 3.0 T vs. 0.49 at 1.5 T; AZ up to 0.88 vs. 0.74; both differences P < 0.05) and highest for the fs-IM FSE sequence at 3.0 T. Average sensitivity for detecting ligament pathology was higher at 3.0 T (0.69 vs. 0.50; P < 0.05). Specificity was high among all protocols and both field strengths for assessing ligament and cartilage pathology (>0.95). Conclusion:Compared with 1.5-T imaging, the 3.0-T imaging of the ankle joint at improved diagnostic performance in assessing cartilage significantly and there was a higher sensitivity for assessing ligamentous pathology.

Collaboration


Dive into the Tobias D. Henning's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Golovko

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas M. Link

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge