Tobias Katus
Birkbeck, University of London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tobias Katus.
Cerebral Cortex | 2015
Tobias Katus; Anna Grubert; Martin Eimer
Sensory recruitment models of working memory assume that information storage is mediated by the same cortical areas that are responsible for the perceptual processing of sensory signals. To test this assumption, we measured somatosensory event-related brain potentials (ERPs) during a tactile delayed match-to-sample task. Participants memorized a tactile sample set at one task-relevant hand to compare it with a subsequent test set on the same hand. During the retention period, a sustained negativity (tactile contralateral delay activity, tCDA) was elicited over primary somatosensory cortex contralateral to the relevant hand. The amplitude of this component increased with memory load and was sensitive to individual limitations in memory capacity, suggesting that the tCDA reflects the maintenance of tactile information in somatosensory working memory. The tCDA was preceded by a transient negativity (N2cc component) with a similar contralateral scalp distribution, which is likely to reflect selection of task-relevant tactile stimuli at the encoding stage. The temporal sequence of N2cc and tCDA components mirrors previous observations from ERP studies of working memory in vision. The finding that the sustained somatosensory delay period activity varies as a function of memory load supports a sensory recruitment model for spatial working memory in touch.
The Journal of Neuroscience | 2015
Tobias Katus; Matthias M. Müller; Martin Eimer
To adaptively guide ongoing behavior, representations in working memory (WM) often have to be modified in line with changing task demands. We used event-related potentials (ERPs) to demonstrate that tactile WM representations are stored in modality-specific cortical regions, that the goal-directed modulation of these representations is mediated through hemispheric-specific activation of somatosensory areas, and that the rehearsal of somatotopic coordinates in memory is accomplished by modality-specific spatial attention mechanisms. Participants encoded two tactile sample stimuli presented simultaneously to the left and right hands, before visual retro-cues indicated which of these stimuli had to be retained to be matched with a subsequent test stimulus on the same hand. Retro-cues triggered a sustained tactile contralateral delay activity component with a scalp topography over somatosensory cortex contralateral to the cued hand. Early somatosensory ERP components to task-irrelevant probe stimuli (that were presented after the retro-cues) and to subsequent test stimuli were enhanced when these stimuli appeared at the currently memorized location relative to other locations on the cued hand, demonstrating that a precise focus of spatial attention was established during the selective maintenance of tactile events in WM. These effects were observed regardless of whether participants performed the matching task with uncrossed or crossed hands, indicating that WM representations in this task were based on somatotopic rather than allocentric spatial coordinates. In conclusion, spatial rehearsal in tactile WM operates within somatotopically organized sensory brain areas that have been recruited for information storage.
The Journal of Neuroscience | 2015
Tobias Katus; Martin Eimer
The short-term retention of sensory information in working memory (WM) is known to be associated with a sustained enhancement of neural activity. What remains controversial is whether this neural trace indicates the sustained storage of information or the allocation of attention. To evaluate the storage and attention accounts, we examined sustained tactile contralateral delay activity (tCDA component) of the event-related potential. The tCDA manifests over somatosensory cortex contralateral to task-relevant tactile information during stimulus retention. Two tactile sample sets (S1, S2) were presented sequentially, separated by 1.5 s. Each set comprised two stimuli, one per hand. Human participants memorized the location of one task-relevant stimulus per sample set and judged whether one of these locations was stimulated again at memory test. The two relevant pulses were unpredictably located on the same hand (stay trials) or on different hands (shift trials). Initially, tCDA components emerged contralateral to the relevant S1 pulse. Sequential loading of WM enhanced the tCDA after S2 was presented on stay trials. On shift trials, the tCDAs polarity reversed after S2 presentation, resulting in delay activity that was now contralateral to the task-relevant S2 pulse. The disappearance of a lateralized neural trace for the relevant S1 pulse did not impair memory accuracy for this stimulus on shift trials. These results contradict the storage account and suggest that delay period activity indicates the sustained engagement of an attention-based rehearsal mechanism. In conclusion, somatosensory delay period activity marks the current focus of attention in tactile WM.
NeuroImage | 2016
Tobias Katus; Matthias M. Müller
Working memory (WM) recruits neural circuits that also perform perception- and action-related functions. Among the functions that are shared between the domains of WM and perception is selective attention, which supports the maintenance of task-relevant information during the retention delay of WM tasks. The tactile contralateral delay activity (tCDA) component of the event-related potential (ERP) marks the attention-based rehearsal of tactile information in somatosensory brain regions. We tested whether the tCDA reflects the competition for shared attention resources between a WM task and a perceptual task under dual-task conditions. The two tasks were always performed on opposite hands. In different blocks, the WM task had higher or lower priority than the perceptual task. The tCDAs polarity consistently reflected the hand where the currently prioritized task was performed. This suggests that the process indexed by the tCDA is not specific to the domain of WM, but mediated by a domain-unspecific attention mechanism. The analysis of transient ERP components evoked by stimuli in the two tasks further supports the interpretation that the tCDA marks a goal-directed bias in the allocation of selective attention. Larger spatially selective modulations were obtained for stimulus material related to the high-, as compared to low-priority, task. While our results generally indicate functional overlap between the domains of WM and perception, we also found evidence suggesting that selection in internal (mnemonic) and external (perceptual) stimulus representations involves processes that are not active during shifts of preparatory attention.
NeuroImage | 2016
Tobias Katus; Martin Eimer
The maintenance of sensory information in working memory (WM) is mediated by the attentional activation of stimulus representations that are stored in perceptual brain regions. Using event-related potentials (ERPs), we measured tactile and visual contralateral delay activity (tCDA/CDA components) in a bimodal WM task to concurrently track the attention-based maintenance of information stored in anatomically segregated (somatosensory and visual) brain areas. Participants received tactile and visual sample stimuli on both sides, and in different blocks, memorized these samples on the same side or on opposite sides. After a retention delay, memory was unpredictably tested for touch or vision. In the same side blocks, tCDA and CDA components simultaneously emerged over the same hemisphere, contralateral to the memorized tactile/visual sample set. In opposite side blocks, these two components emerged over different hemispheres, but had the same sizes and onset latencies as in the same side condition. Our results reveal distinct foci of tactile and visual spatial attention that were concurrently maintained on task-relevant stimulus representations in WM. The independence of spatially-specific biasing mechanisms for tactile and visual WM content suggests that multimodal information is stored in distributed perceptual brain areas that are activated through modality-specific processes that can operate simultaneously and largely independently of each other.
Journal of Cognitive Neuroscience | 2017
Tobias Katus; Anna Grubert; Martin Eimer
Attention maintains task-relevant information in working memory (WM) in an active state. We investigated whether the attention-based maintenance of stimulus representations that were encoded through different modalities is flexibly controlled by top–down mechanisms that depend on behavioral goals. Distinct components of the ERP reflect the maintenance of tactile and visual information in WM. We concurrently measured tactile (tCDA) and visual contralateral delay activity (CDA) to track the attentional activation of tactile and visual information during multimodal WM. Participants simultaneously received tactile and visual sample stimuli on the left and right sides and memorized all stimuli on one task-relevant side. After 500 msec, an auditory retrocue indicated whether the sample sets tactile or visual content had to be compared with a subsequent test stimulus set. tCDA and CDA components that emerged simultaneously during the encoding phase were consistently reduced after retrocues that marked the corresponding (tactile or visual) modality as task-irrelevant. The absolute size of cue-dependent modulations was similar for the tCDA/CDA components and did not depend on the number of tactile/visual stimuli that were initially encoded into WM. Our results suggest that modality-specific maintenance processes in sensory brain regions are flexibly modulated by top–down influences that optimize multimodal WM representations for behavioral goals.
Journal of Cognitive Neuroscience | 2018
Tobias Katus; Martin Eimer
Working memory (WM) is limited in capacity, but it is controversial whether these capacity limitations are domain-general or are generated independently within separate modality-specific memory systems. These alternative accounts were tested in bimodal visual/tactile WM tasks. In Experiment 1, participants memorized the locations of simultaneously presented task-relevant visual and tactile stimuli. Visual and tactile WM load was manipulated independently (one, two, or three items per modality), and one modality was unpredictably tested after each trial. To track the activation of visual and tactile WM representations during the retention interval, the visual contralateral delay activity (CDA) and tactile CDA (tCDA) were measured over visual and somatosensory cortex, respectively. CDA and tCDA amplitudes were selectively affected by WM load in the corresponding (tactile or visual) modality. The CDA parametrically increased when visual load increased from one to two and to three items. The tCDA was enhanced when tactile load increased from one to two items and showed no further enhancement for three tactile items. Critically, these load effects were strictly modality-specific, as substantiated by Bayesian statistics. Increasing tactile load did not affect the visual CDA, and increasing visual load did not modulate the tCDA. Task performance at memory test was also unaffected by WM load in the other (untested) modality. This was confirmed in a second behavioral experiment where tactile and visual loads were either two or four items, unimodal baseline conditions were included, and participants performed a color change detection task in the visual modality. These results show that WM capacity is not limited by a domain-general mechanism that operates across sensory modalities. They suggest instead that WM storage is mediated by distributed modality-specific control mechanisms that are activated independently and in parallel during multisensory WM.
Journal of Vision | 2015
Tobias Katus; Anna Grubert; Martin Eimer
The sensory recruitment account of working memory (WM) assumes that the short-term retention of visual or tactile stimuli is implemented by cortical areas that are also responsible for the perceptual processing of these stimuli. Focal attention supports the short-term retention of sensory information, but it is unknown whether attention can also be flexibly shifted between visual and tactile WM representations. This study explored such inter-modal attention shifts in a task that required memory for simultaneously presented tactile and visual stimuli. A set of bilateral tactile and visual sample stimuli was followed after a retention period by a set of test stimuli. In different blocks, participants were instructed to memorize all stimuli on either the left or the right side. An auditory retro-cue, presented 500 ms after the sample sets, signalled whether the tactile or visual stimuli were relevant for the upcoming memory test. To study how these cues affect tactile and visual short-term storage, we measured the visual contralateral delay activity (CDA component) of the event-related potential (ERP) and its tactile counterpart (tCDA) that are elicited over modality-specific visual and somatosensory cortex. Scalp current density transforms were used to minimize volume-conduction, and to simultaneously measure these components over somatosensory and visual regions of interest (ROIs). A significant ROI x cued modality interaction demonstrated that visual and tactile WM was affected by the cued task-relevance of these sensory modalities. The tCDA component over somatosensory scalp regions was present only when touch was cued. The CDA over visual cortex was present in both cueing conditions, but was larger when vision was cued. Our results suggest that tactile and visual stimuli are stored separately in modality-specific memory systems. We conclude that retro-cues elicit inter-modal attention shifts that selectively activate information in the currently task-relevant modality. Meeting abstract presented at VSS 2015.
Journal of Cognitive Neuroscience | 2018
Tobias Katus; Martin Eimer
We investigated the sources of dual-task costs arising in multisensory working memory (WM) tasks, where stimuli from different modalities have to be simultaneously maintained. Performance decrements relative to unimodal single-task baselines have been attributed to a modality-unspecific central WM store, but such costs could also reflect increased demands on central executive processes involved in dual-task coordination. To compare these hypotheses, we asked participants to maintain two, three, or four visual items. Unimodal trials, where only this visual task was performed, and bimodal trials, where a concurrent tactile WM task required the additional maintenance of two tactile items, were randomly intermixed. We measured the visual and tactile contralateral delay activity (CDA/tCDA components) as markers of WM maintenance in visual and somatosensory areas. There were reliable dual-task costs, as visual CDA components were reduced in size and visual WM accuracy was impaired on bimodal relative to unimodal trials. However, these costs did not depend on visual load, which caused identical CDA modulations in unimodal and bimodal trials, suggesting that memorizing tactile items did not reduce the number of visual items that could be maintained. Visual load did not also affect tCDA amplitudes. These findings indicate that bimodal dual-task costs do not result from a competition between multisensory items for shared storage capacity. Instead, these costs reflect generic limitations of executive control mechanisms that coordinate multiple cognitive processes in dual tasks. Our results support hierarchical models of WM, where distributed maintenance processes with modality-specific capacity limitations are controlled by a central executive mechanism.
Mechanisms of Sensory Working Memory#R##N#Attention and Perfomance XXV | 2015
Tobias Katus; Søren K. Andersen
Short-term memory (STM) encompasses cognitive functions for the storage, maintenance, and mental manipulation of information that is no longer present in the sensory environment. Selective attention, on the other hand, relates to functions that modulate the processing of sensory events during encoding. We review evidence from a series of three tactile memory experiments using electroencephalography and discuss our observations in the context of research on tactile perceptual attention and visual STM. Striking similarities across the domains of STM and perception indicate that the central executive system for tactile STM relies on control mechanisms that accomplish attentional selection during somatosensory encoding. Our findings support the view that STM emerges when attention is directed to the representation of sensory signals stored in modality-specific brain areas.