Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tobias O. Apinjoh is active.

Publication


Featured researches published by Tobias O. Apinjoh.


Nature Genetics | 2014

Reappraisal of known malaria resistance loci in a large multicenter study

Kirk A. Rockett; Geraldine M. Clarke; Kathryn Fitzpatrick; Christina Hubbart; Anna Jeffreys; Kate Rowlands; Rachel Craik; Muminatou Jallow; David J. Conway; Kalifa Bojang; Margaret Pinder; Stanley Usen; Fatoumatta Sisay-Joof; Giorgio Sirugo; Ousmane Toure; Mahamadou A. Thera; Salimata Konate; Sibiry Sissoko; Amadou Niangaly; Belco Poudiougou; V. Mangano; Edith C. Bougouma; Sodiomon B. Sirima; David Modiano; Lucas Amenga-Etego; Anita Ghansah; Kwadwo A. Koram; Michael D. Wilson; Anthony Enimil; Jennifer L. Evans

Many human genetic associations with resistance to malaria have been reported, but few have been reliably replicated. We collected data on 11,890 cases of severe malaria due to Plasmodium falciparum and 17,441 controls from 12 locations in Africa, Asia and Oceania. We tested 55 SNPs in 27 loci previously reported to associate with severe malaria. There was evidence of association at P < 1 × 10−4 with the HBB, ABO, ATP2B4, G6PD and CD40LG loci, but previously reported associations at 22 other loci did not replicate in the multicenter analysis. The large sample size made it possible to identify authentic genetic effects that are heterogeneous across populations or phenotypes, with a striking example being the main African form of G6PD deficiency, which reduced the risk of cerebral malaria but increased the risk of severe malarial anemia. The finding that G6PD deficiency has opposing effects on different fatal complications of P. falciparum infection indicates that the evolutionary origins of this common human genetic disorder are more complex than previously supposed.


The Journal of Infectious Diseases | 2014

K13-Propeller Polymorphisms in Plasmodium falciparum Parasites From Sub-Saharan Africa

Edwin Kamau; Susana Campino; Lucas Amenga-Etego; Eleanor Drury; Deus S. Ishengoma; Kimberly Johnson; Dieudonné Mumba; Mihir Kekre; William Yavo; Daniel Mead; Marielle Bouyou-Akotet; Tobias O. Apinjoh; Lemu Golassa; Milijaona Randrianarivelojosia; Ben Andagalu; Oumou Maïga-Ascofaré; Alfred Amambua-Ngwa; Paulina Tindana; Anita Ghansah; Bronwyn MacInnis; Dominic P. Kwiatkowski; Abdoulaye A. Djimde

Mutations in the Plasmodium falciparum K13-propeller domain have recently been shown to be important determinants of artemisinin resistance in Southeast Asia. This study investigated the prevalence of K13-propeller polymorphisms across sub-Saharan Africa. A total of 1212 P. falciparum samples collected from 12 countries were sequenced. None of the K13-propeller mutations previously reported in Southeast Asia were found, but 22 unique mutations were detected, of which 7 were nonsynonymous. Allele frequencies ranged between 1% and 3%. Three mutations were observed in >1 country, and the A578S was present in parasites from 5 countries. This study provides the baseline prevalence of K13-propeller mutations in sub-Saharan Africa.


eLife | 2016

Genomic epidemiology of artemisinin resistant malaria.

A. Amato; Olivo Miotto; Charles J. Woodrow; Jacob Almagro-Garcia; Ipsita Sinha; Susana Campino; Daniel Mead; Eleanor Drury; Mihir Kekre; Mandy Sanders; Alfred Amambua-Ngwa; Chanaki Amaratunga; Lucas Amenga-Etego; V. Andrianaranjaka; Tobias O. Apinjoh; Elizabeth A. Ashley; Sarah Auburn; Gordon A. Awandare; V. Baraka; Alyssa E. Barry; Maciej F. Boni; Steffen Borrmann; Teun Bousema; OraLee H. Branch; Peter C. Bull; Kesinee Chotivanich; David J. Conway; Alister Craig; Nicholas P. J. Day; A. Djimdé

The current epidemic of artemisinin resistant Plasmodium falciparum in Southeast Asia is the result of a soft selective sweep involving at least 20 independent kelch13 mutations. In a large global survey, we find that kelch13 mutations which cause resistance in Southeast Asia are present at low frequency in Africa. We show that African kelch13 mutations have originated locally, and that kelch13 shows a normal variation pattern relative to other genes in Africa, whereas in Southeast Asia there is a great excess of non-synonymous mutations, many of which cause radical amino-acid changes. Thus, kelch13 is not currently undergoing strong selection in Africa, despite a deep reservoir of variations that could potentially allow resistance to emerge rapidly. The practical implications are that public health surveillance for artemisinin resistance should not rely on kelch13 data alone, and interventions to prevent resistance must account for local evolutionary conditions, shown by genomic epidemiology to differ greatly between geographical regions.


Science | 2017

Resistance to malaria through structural variation of red blood cell invasion receptors

Ellen M. Leffler; Gavin Band; George B.J. Busby; Katja Kivinen; Geraldine M. Clarke; Kalifa Bojang; David J. Conway; Muminatou Jallow; Fatoumatta Sisay-Joof; Edith C. Bougouma; V. Mangano; David Modiano; Sodiomon B. Sirima; Eric A. Achidi; Tobias O. Apinjoh; Kevin Marsh; Carolyne Ndila; Norbert Peshu; Thomas N. Williams; Chris Drakeley; Alphaxard Manjurano; Hugh Reyburn; Eleanor M. Riley; David Kachala; Malcolm E. Molyneux; Vysaul Nyirongo; Terrie E. Taylor; Nicole Thornton; Louise Tilley; Shane Grimsley

Structural variants are mapped that are correlated with a reduced risk of severe malaria. Pathogens select for genomic variants Large-scale deletions and duplications of genes, referred to as structural variants (SVs), are common within the human genome and have been linked to disease. Examining a genomic region that appears to confer a selective benefit, Leffler et al. used fine mapping to identify a specific SV that reduces the risk of severe malaria by an estimated 40% (see the Perspective by Winzeler). Data from African individuals revealed that populations harbor different SVs in this region. Furthermore, by dissecting a highly complex genomic region, the authors identified the likely causal element. This element encodes hybrid genes that affect glycophorin proteins, which are used by the malarial parasite in infection and are associated with resistance to severe disease. Science, this issue p. eaam6393; see also p. 1122 INTRODUCTION Malaria parasites cause human disease by invading and replicating inside red blood cells. In the case of Plasmodium falciparum, this can lead to severe forms of malaria that are a major cause of childhood mortality in Africa. This species of parasite enters the red blood cell through interactions with surface proteins including the glycophorins GYPA and GYPB, which determine the polymorphic MNS blood group system. In a recent genome-wide association study, we identified alleles associated with protection against severe malaria near the cluster of genes encoding these invasion receptors. RATIONALE Investigation of genetic variants at this locus and their relation to severe malaria is challenging because of the high sequence similarity between the neighboring glycophorin genes and the relative lack of available sequence data capturing the genetic diversity of sub-Saharan Africa. To better assess whether variation in the glycophorin genes could explain the signal of association, we generated additional sequence data from sub-Saharan African populations and developed an analytical approach to characterize structural variation at this complex locus. RESULTS Using 765 newly sequenced human genomes from 10 African ethnic groups along with data from the 1000 Genomes Project, we generated a reference panel of haplotypes across the glycophorin region. In addition to single-nucleotide polymorphisms and short indels, we assayed large copy number variants (CNVs) using sequencing read depth and uncovered extensive structural diversity. By imputing from this reference panel into 4579 severe malaria cases and 5310 controls from three African populations, we found that a complex CNV, here called DUP4, is associated with resistance to severe malaria and fully explains the previously reported signal of association. In our sample, DUP4 is present only in east Africa, and this localization, as well as the extent of similarity between DUP4 haplotypes, suggests that it has recently increased in frequency, presumably under natural selection due to malaria. To evaluate the potential functional consequences of this structural variant, we analyzed high-coverage sequence-read data from multiple individuals to generate a model of the DUP4 chromosome structure. The DUP4 haplotype contains five glycophorin genes, including two hybrid genes that juxtapose the extracellular domain of GYPB with the transmembrane and intracellular domains of GYPA. Noting that these predicted hybrids are characteristic of the Dantu antigen in the MNS blood group system, we sequenced a Dantu positive individual and confirmed that DUP4 is the molecular basis of the Dantu NE blood group variant. CONCLUSION Although a role for GYPA and GYPB in parasite invasion is well known, a direct link between glycophorin polymorphisms and clinical susceptibility to malaria has been elusive. Here we have provided a systematic catalog of CNVs, describing structural diversity that may have functional importance at this locus. Our results identify a specific variant that encodes hybrid glycophorin proteins and is associated with protection against severe malaria. This discovery calls for further work to determine how this particular molecular rearrangement affects parasite invasion and the red blood cell response and may lead us toward new parasite vulnerabilities that can be utilized in future interventions against this deadly disease. A structural variant creating hybrid glycophorin genes is associated with protection from severe malaria. The reference haplotype carries three glycophorin genes, two of which (GYPA and GYPB) are expressed as proteins on the red blood cell surface. The malaria-protective haplotype carries five glycophorin genes, including two hybrid genes that encode the Dantu blood group antigen and are composed of a GYPB extracellular domain and GYPA intracellular domain. These glycophorins serve as receptors for malaria-parasite ligands during red blood cell invasion. The malaria parasite Plasmodium falciparum invades human red blood cells by a series of interactions between host and parasite surface proteins. By analyzing genome sequence data from human populations, including 1269 individuals from sub-Saharan Africa, we identify a diverse array of large copy-number variants affecting the host invasion receptor genes GYPA and GYPB. We find that a nearby association with severe malaria is explained by a complex structural rearrangement involving the loss of GYPB and gain of two GYPB-A hybrid genes, which encode a serologically distinct blood group antigen known as Dantu. This variant reduces the risk of severe malaria by 40% and has recently increased in frequency in parts of Kenya, yet it appears to be absent from west Africa. These findings link structural variation of red blood cell invasion receptors with natural resistance to severe malaria.


Malaria Journal | 2012

Severe and uncomplicated falciparum malaria in children from three regions and three ethnic groups in Cameroon: prospective study

Eric A. Achidi; Tobias O. Apinjoh; Judith K. Anchang-Kimbi; Regina N. Mugri; Andre N. Ngwai; Clarisse N Yafi

BackgroundTo identify the factors that account for differences in clinical outcomes of malaria as well as its relationship with ethnicity, transmission intensity and parasite density.MethodsA prospective study was conducted in nine health facilities in the Centre, Littoral and South West regions of Cameroon, and in three ethnic groups; the Bantu, Semi-Bantu and Foulbe. Children aged one month to 13 years, with diagnosis suggestive of malaria, were recruited and characterized using the WHO definition for severe and uncomplicated malaria. Malaria parasitaemia was determined by light microscopy, haematological analysis using an automated haematology analyser and glucose level by colorimetric technique.ResultsOf the febrile children screened, 971 of the febrile children screened fulfilled the inclusion criteria for specific malaria clinical phenotypes. Forty-nine (9.2%) children had cerebral malaria, a feature that was similar across age groups, ethnicity and gender but lower (P < 0.004) in proportion in the Centre (3.1%, 5/163) compared to the Littoral (11.3%, 32/284) and South West (13.6%, 12/88) regions. Severe anaemia was the most frequent severe disease manifestation, 28.0% (248/885), which was similar in proportion across the three ethnic groups but was more prevalent in females, less than 60 months old, and the Centre region. About 20% (53/267) of the participants presented with respiratory distress, a clinical phenotype independent of age, gender and ethnicity, but highest (P < 0.001) in the Centre (55%, 11/20) compared to the Littoral (27.3%, 3/11) and South West (16.5%, 39/236) regions. Uncomplicated malaria constituted 27.7% (255/920) of hospital admissions and was similar in proportion with gender and across the three ethnic groups but more prevalent in older children (≥ 60 months) as well as in the South West region. The density of malaria parasitaemia was generally similar across clinical groups, gender and ethnicity. However, younger children and residents of the Centre region carried significantly higher parasite loads, with the burden heavier in the Semi-Bantu compared to their Bantu (P = 0.009) and Foulbe (P = 0.026) counterparts in the Centre region. The overall study case fatality was 4.8 (47/755), with cerebral malaria being the only significant risk factor associated with death. Severe anaemia, though a common and major clinical presentation, was not significantly associated with risk of death.ConclusionAbout half of the acutely febrile children presented with severe malaria, the majority being cases of severe malaria anaemia, followed by respiratory distress and cerebral malaria. The latter two were less prevalent in the Centre region compared to the other regions. Cerebral malaria and hyperpyrexia were the only significant risk factors associated with death.


Nature | 2017

Plasmodium malariae and P . ovale genomes provide insights into malaria parasite evolution

Gavin G. Rutledge; Ulrike Böhme; Mandy Sanders; Adam J. Reid; James A. Cotton; Oumou Maïga-Ascofaré; Abdoulaye Djimde; Tobias O. Apinjoh; Lucas Amenga-Etego; Magnus Manske; John W. Barnwell; François Renaud; Benjamin Ollomo; Franck Prugnolle; Nicholas M. Anstey; Sarah Auburn; Ric N. Price; James S. McCarthy; Dominic P. Kwiatkowski; Chris Newbold; Matthew Berriman; Thomas D. Otto

Elucidation of the evolutionary history and interrelatedness of Plasmodium species that infect humans has been hampered by a lack of genetic information for three human-infective species: P. malariae and two P. ovale species (P. o. curtisi and P. o. wallikeri). These species are prevalent across most regions in which malaria is endemic and are often undetectable by light microscopy, rendering their study in human populations difficult. The exact evolutionary relationship of these species to the other human-infective species has been contested. Using a new reference genome for P. malariae and a manually curated draft P. o. curtisi genome, we are now able to accurately place these species within the Plasmodium phylogeny. Sequencing of a P. malariae relative that infects chimpanzees reveals similar signatures of selection in the P. malariae lineage to another Plasmodium lineage shown to be capable of colonization of both human and chimpanzee hosts. Molecular dating suggests that these host adaptations occurred over similar evolutionary timescales. In addition to the core genome that is conserved between species, differences in gene content can be linked to their specific biology. The genome suggests that P. malariae expresses a family of heterodimeric proteins on its surface that have structural similarities to a protein crucial for invasion of red blood cells. The data presented here provide insight into the evolution of the Plasmodium genus as a whole.


Annals of Tropical Medicine and Parasitology | 2008

Febrile status, malarial parasitaemia and gastro-intestinal helminthiases in schoolchildren resident at different altitudes, in south–western Cameroon

Eric A. Achidi; Tobias O. Apinjoh; E. Mbunwe; R. Besingi; C. Yafi; N. Wenjighe Awah; A. Ajua; Judith K Anchang

Abstract In the many areas where human malaria and helminthiases are co-endemic, schoolchildren often harbour the heaviest infections and suffer much of the associated morbidity, especially when co-infected. In one such area, the Buea district, in south–western Cameroon, two cross-sectional surveys, together covering 263 apparently healthy schoolchildren aged 4–12 years, were recently conducted. The prevalences of fever, malarial parasitaemia and intestinal helminth infections, the seroprevalences of anti-Plasmodium falciparum IgG and IgE and anti-glycosylphosphatidylinositol (anti-GPI) IgG, plasma concentrations of total IgE, and the incidence of anaemia were all investigated. The mean (S.D.) age of the study children was 7.56 (1.82) years. Overall, 156 (59.3%) of the children were found parasitaemic, with a geometric mean parasitaemia of 565 parasites/μml. Parasitaemia and fever were significantly associated (P=0.042). The children who lived at low altitude, attending schools that lay 400–650 m above sea level, had significantly higher parasitaemias than their high-altitude counterparts (P<0.01). At low altitude, the children attending government schools had significantly higher parasitaemias than their mission-school counterparts (P=0.010). Of the 31 children (11.9%) found anaemic, 22 (70.4%) had mild anaemia and none had severe anaemia. A significant negative correlation (r=−0.224; P=0.005) was observed between haemoglobin concentration and level of parasitaemia. Infection with Plasmodium appeared to reduce erythrocyte counts (P=0.045), a condition that was exacerbated by co-infection with helminths (P=0.035). Plasma concentrations of total IgE were higher in the children found to be excreting helminth eggs than in those who appeared helminth-free, while levels of anti-P. falciparum IgE were higher in the children with low-grade parasitaemias than in those with more intense parasitaemias. Levels of anti-GPI IgG increased with age and were relatively high in the children who lived at low altitude and in those who were aparasitaemic. The survey results confirm that asymptomatic malarial parasitaemia frequently co-exists with helminth infections in schoolchildren and indicate links with fever, altitude and school type. Immunoglobulin E may play a role in immune protection against helminthiasis whereas anti-GPI antibodies may be important in the development of antimalarial immunity in such children. In Cameroon, as in other areas with endemic malaria, control programmes to reduce the prevalences of infections with intestinal helminths and malarial parasites in schoolchildren, which may effectively reduce the incidence of anaemia, are clearly needed.


Science | 2014

Monitoring parasite diversity for malaria elimination in sub-Saharan Africa.

Anita Ghansah; Lucas Amenga-Etego; Alfred Amambua-Ngwa; Ben Andagalu; Tobias O. Apinjoh; Marielle Bouyou-Akotet; Victoria Cornelius; Lemu Golassa; Voahangy Andrianaranjaka; Deus S. Ishengoma; Kimberly Johnson; Edwin Kamau; Oumou Maïga-Ascofaré; Dieudonné Mumba; Paulina Tindana; Antoinette Tshefu-Kitoto; Milijaona Randrianarivelojosia; Yavo William; Dominic P. Kwiatkowski; Abdoulaye A. Djimde

The African continent continues to bear the greatest burden of malaria and the greatest diversity of parasites, mosquito vectors, and human victims. The evolutionary plasticity of malaria parasites and their vectors is a major obstacle to eliminating the disease. Of current concern is the recently reported emergence of resistance to the front-line drug, artemisinin, in South-East Asia in Plasmodium falciparum, which calls for preemptive surveillance of the African parasite population for genetic markers of emerging drug resistance. Here we describe the Plasmodium Diversity Network Africa (PDNA), which has been established across 11 countries in sub-Saharan Africa to ensure that African scientists are enabled to work together and to play a key role in the global effort for tracking and responding to this public health threat.


Malaria Journal | 2014

Antenatal care visit attendance, intermittent preventive treatment during pregnancy (IPTp) and malaria parasitaemia at delivery

Judith K. Anchang-Kimbi; Eric A. Achidi; Tobias O. Apinjoh; Regina N. Mugri; Hanesh F. Chi; Rolland B. Tata; Blaise Nkegoum; Joseph-Marie N. Mendimi; Eva Sverremark-Ekström; Marita Troye-Blomberg

BackgroundThe determinants and barriers for delivery and uptake of IPTp vary with different regions in sub-Saharan Africa. This study evaluated the determinants of ANC clinic attendance and IPTp-SP uptake among parturient women from Mount Cameroon Area and hypothesized that time of first ANC clinic attendance could influence uptake of IPTp-SP/dosage and consequently malaria parasite infection status at delivery.MethodsTwo cross sectional surveys were carried out at the Government Medical Centre in the Mutengene Health Area, Mt Cameroon Area from March to October 2007 and June 2008 to April 2009. Consented parturient women were consecutively enrolled in both surveys. In 2007, socio-demographic data, ANC clinic attendance, gestational age, fever history and reported use/dosage of IPTp-SP were documented using a structured questionnaire. In the second survey only IPT-SP usage/dosage was recorded. Malaria parasitaemia at delivery was determined by blood smear microscopy and placental histology.Results and discussionIn 2007, among the 287 women interviewed, 2.2%, 59.7%, and 38.1% enrolled in the first, second and third trimester respectively. About 90% of women received at least one dose SP but only 53% received the two doses in 2007 and by 2009 IPTp-two doses coverage increased to 64%. Early clinic attendance was associated (P = 0.016) with fever history while being unmarried (OR = 2.2; 95% CI: 1.3-3.8) was significantly associated with fewer clinic visits (<4visits). Women who received one SP dose (OR = 3.7; 95% CI: 2.0-6.8) were more likely not to have attended ≥ 4visits. A higher proportion (P < 0.001) of women with first visit during the third trimester received only one dose, meanwhile, those who had an early first ANC attendance were more likely (OR = 0.4; 95% CI = 0.2 - 0.7) to receive two or more doses. Microscopic parasitaemia at delivery was frequent (P = 0.007) among women who enrolled in the third trimester and had received only one SP dose than in those with two doses.ConclusionIn the study area, late first ANC clinic enrolment and fewer clinic visits may prevent the uptake of two SP doses and education on early and regular ANC clinic visits can increase IPTp coverage.


PLOS ONE | 2013

Association of Cytokine and Toll-Like Receptor Gene Polymorphisms with Severe Malaria in Three Regions of Cameroon

Tobias O. Apinjoh; Judith K. Anchang-Kimbi; Clarisse Njua-Yafi; Regina N. Mugri; Andre N. Ngwai; Kirk A. Rockett; Eric Mbunwe; Richard Besingi; Taane G. Clark; Dominic P. Kwiatkowski; Eric A. Achidi

P. falciparum malaria is one of the most widespread and deadliest infectious diseases in children under five years in endemic areas. The disease has been a strong force for evolutionary selection in the human genome, and uncovering the critical human genetic factors that confer resistance to the disease would provide clues to the molecular basis of protective immunity that would be invaluable for vaccine development. We investigated the effect of single nucleotide polymorphisms (SNPs) on malaria pathology in a case- control study of 1862 individuals from two major ethnic groups in three regions with intense perennial P. falciparum transmission in Cameroon. Twenty nine polymorphisms in cytokine and toll-like receptor (TLR) genes as well as the sickle cell trait (HbS) were assayed on the Sequenom iPLEX platform. Our results confirm the known protective effect of HbS against severe malaria and also reveal a protective effect of SNPs in interleukin-10 (IL10) cerebral malaria and hyperpyrexia. Furthermore, IL17RE rs708567 GA and hHbS rs334 AT individuals were associated with protection from uncomplicated malaria and anaemia respectively in this study. Meanwhile, individuals with the hHbS rs334 TT, IL10 rs3024500 AA, and IL17RD rs6780995 GA genotypes were more susceptible to severe malarial anaemia, cerebral malaria, and hyperpyrexia respectively. Taken together, our results suggest that polymorphisms in some immune response genes may have important implications for the susceptibility to severe malaria in Cameroonians. Moreover using uncomplicated malaria may allow us to identify novel pathways in the early development of the disease.

Collaboration


Dive into the Tobias O. Apinjoh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dominic P. Kwiatkowski

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge