Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tobias Schreck is active.

Publication


Featured researches published by Tobias Schreck.


IEEE Transactions on Visualization and Computer Graphics | 2016

Temporal MDS Plots for Analysis of Multivariate Data

Dominik Jäckle; Fabian Fischer; Tobias Schreck; Daniel A. Keim

Multivariate time series data can be found in many application domains. Examples include data from computer networks, healthcare, social networks, or financial markets. Often, patterns in such data evolve over time among multiple dimensions and are hard to detect. Dimensionality reduction methods such as PCA and MDS allow analysis and visualization of multivariate data, but per se do not provide means to explore multivariate patterns over time. We propose Temporal Multidimensional Scaling (TMDS), a novel visualization technique that computes temporal one-dimensional MDS plots for multivariate data which evolve over time. Using a sliding window approach, MDS is computed for each data window separately, and the results are plotted sequentially along the time axis, taking care of plot alignment. Our TMDS plots enable visual identification of patterns based on multidimensional similarity of the data evolving over time. We demonstrate the usefulness of our approach in the field of network security and show in two case studies how users can iteratively explore the data to identify previously unknown, temporally evolving patterns.


Brain Informatics | 2016

Visual analytics for concept exploration in subspaces of patient groups

Michael Hund; Dominic Böhm; Werner Sturm; Michael Sedlmair; Tobias Schreck; Torsten Ullrich; Daniel A. Keim; Ljiljana Majnarić; Andreas Holzinger

Medical doctors and researchers in bio-medicine are increasingly confronted with complex patient data, posing new and difficult analysis challenges. These data are often comprising high-dimensional descriptions of patient conditions and measurements on the success of certain therapies. An important analysis question in such data is to compare and correlate patient conditions and therapy results along with combinations of dimensions. As the number of dimensions is often very large, one needs to map them to a smaller number of relevant dimensions to be more amenable for expert analysis. This is because irrelevant, redundant, and conflicting dimensions can negatively affect effectiveness and efficiency of the analytic process (the so-called curse of dimensionality). However, the possible mappings from high- to low-dimensional spaces are ambiguous. For example, the similarity between patients may change by considering different combinations of relevant dimensions (subspaces). We demonstrate the potential of subspace analysis for the interpretation of high-dimensional medical data. Specifically, we present SubVIS, an interactive tool to visually explore subspace clusters from different perspectives, introduce a novel analysis workflow, and discuss future directions for high-dimensional (medical) data analysis and its visual exploration. We apply the presented workflow to a real-world dataset from the medical domain and show its usefulness with a domain expert evaluation.


International Conference on Brain Informatics and Health | 2015

Analysis of Patient Groups and Immunization Results Based on Subspace Clustering

Michael Hund; Werner Sturm; Tobias Schreck; Torsten Ullrich; Daniel A. Keim; Ljiljana Majnarić; Andreas Holzinger

Biomedical experts are increasingly confronted with what is often called Big Data, an important subclass of high-dimensional data. High-dimensional data analysis can be helpful in finding relationships between records and dimensions. However, due to data complexity, experts are decreasingly capable of dealing with increasingly complex data. Mapping higher dimensional data to a smaller number of relevant dimensions is a big challenge due to the curse of dimensionality. Irrelevant, redundant, and conflicting dimensions affect the effectiveness and efficiency of analysis. Furthermore, the possible mappings from high- to low-dimensional spaces are ambiguous. For example, the similarity between patients may change by considering different combinations of relevant dimensions (subspaces). We show the potential of subspace analysis for the interpretation of high-dimensional medical data. Specifically, we analyze relationships between patients, sets of patient attributes, and outcomes of a vaccination treatment by means of a subspace clustering approach. We present an analysis workflow and discuss future directions for high-dimensional (medical) data analysis and visual exploration.


international conference on information technology | 2016

Integrating Open Data on Cancer in Support to Tumor Growth Analysis

Fleur Jeanquartier; Claire Jean-Quartier; Tobias Schreck; David Cemernek; Andreas Holzinger

The general disease group of malignant neoplasms depicts one of the leading and increasing causes for death. The underlying complexity of cancer demands for abstractions to disclose an exclusive subset of information related to the disease. Our idea is to create a user interface for linking a simulation on cancer modeling to relevant additional publicly and freely available data. We are not only providing a categorized list of open datasets and queryable databases for the different types of cancer and related information, we also identify a certain subset of temporal and spatial data related to tumor growth. Furthermore, we describe the integration possibilities into a simulation tool on tumor growth that incorporates the tumor’s kinetics.


IEEE Computer Graphics and Applications | 2016

Director's Cut: Analysis and Annotation of Soccer Matches

Manuel Stein; Halldor Janetzko; Thorsten Breitkreutz; Daniel Seebacher; Tobias Schreck; Michael Grossniklaus; Iain D. Couzin; Daniel A. Keim

For development and alignment of tactics and strategies, professional soccer analysts spend up to three working days manually analyzing and annotating professional soccer matches. In an effort to improve soccer player and match analysis, a visual-interactive and data-analysis support system focuses on key situations by using rule-based filtering and automatically annotating key types of soccer match elements. The authors evaluate the proposed approach by analyzing real-world soccer matches and several expert studies. Quantitative measures show the proposed methods can significantly outperform naive solutions.


eurographics | 2015

Discovering medical knowledge using visual analytics: a survey on methods for systems biology and *-omics data

Werner Sturm; Tobias Schreck; Andreas Holzinger; Torsten Ullrich

Due to advanced technologies, the amount of biomedical data has been increasing drastically. Such large data sets might be obtained from hospitals, medical practices or laboratories and can be used to discover unknown knowledge and to find and reflect hypotheses. Based on this fact, knowledge discovery systems can support experts to make further decisions, explore the data or to predict future events. To analyze and communicate such a vast amount of information to the user, advanced techniques such as knowledge discovery and information visualization are necessary. Visual analytics combines these fields and supports users to integrate domain knowledge into the knowledge discovery process. n nThis article gives a state-of-the-art overview on visual analytics reseach with a focus on the biomedical domain, systems biology and *omics data.


IEEE Transactions on Visualization and Computer Graphics | 2017

Magnostics: Image-Based Search of Interesting Matrix Views for Guided Network Exploration

Michael Behrisch; Benjamin Bach; Michael Hund; Michael Delz; Laura Von Ruden; Jean-Daniel Fekete; Tobias Schreck

In this work we address the problem of retrieving potentially interesting matrix views to support the exploration of networks. We introduce Matrix Diagnostics (or Magnostics), following in spirit related approaches for rating and ranking other visualization techniques, such as Scagnostics for scatter plots. Our approach ranks matrix views according to the appearance of specific visual patterns, such as blocks and lines, indicating the existence of topological motifs in the data, such as clusters, bi-graphs, or central nodes. Magnostics can be used to analyze, query, or search for visually similar matrices in large collections, or to assess the quality of matrix reordering algorithms. While many feature descriptors for image analyzes exist, there is no evidence how they perform for detecting patterns in matrices. In order to make an informed choice of feature descriptors for matrix diagnostics, we evaluate 30 feature descriptors-27 existing ones and three new descriptors that we designed specifically for MAGNOSTICS-with respect to four criteria: pattern response, pattern variability, pattern sensibility, and pattern discrimination. We conclude with an informed set of six descriptors as most appropriate for Magnostics and demonstrate their application in two scenarios; exploring a large collection of matrices and analyzing temporal networks.


ACM Journal on Computing and Cultural Heritage | 2017

From Reassembly to Object Completion: A Complete Systems Pipeline

Georgios Papaioannou; Tobias Schreck; Pavlos Mavridis; Robert Gregor; Ivan Sipiran; Konstantinos Vardis

The problem of the restoration of broken artifacts, where large parts could be missing, is of high importance in archaeology. The typical manual restoration can become a tedious and error-prone process, which also does not scale well. In recent years, many methods have been proposed for assisting the process, most of which target specialized object types or operate under very strict constraints. We propose a digital shape restoration pipeline consisting of proven, robust methods for automatic fragment reassembly and shape completion of generic three-dimensional objects of arbitrary type. In this pipeline, first we introduce a novel unified approach for handling the reassembly of objects from heavily damaged fragments by exploiting both fracture surfaces and salient features on the intact sides of fragments, when available. Second, we propose an object completion procedure based on generalized symmetries and a complementary part extraction process that is suitable for driving the fabrication of missing geometry. We demonstrate the effectiveness of our approach using real-world fractured objects and software implemented as part of the European Union--funded PRESIOUS project, which is also available for download from the project site.


eurographics | 2017

Dynamic Visual Abstraction of Soccer Movement

Dominik Sacha; Feeras Al-Masoudi; Manuel Stein; Tobias Schreck; Daniel A. Keim; Gennady L. Andrienko; Halldór Janetzko

Trajectory‐based visualization of coordinated movement data within a bounded area, such as player and ball movement within a soccer pitch, can easily result in visual crossings, overplotting, and clutter. Trajectory abstraction can help to cope with these issues, but it is a challenging problem to select the right level of abstraction (LoA) for a given data set and analysis task. We present a novel dynamic approach that combines trajectory simplification and clustering techniques with the goal to support interpretation and understanding of movement patterns. Our technique provides smooth transitions between different abstraction types that can be computed dynamically and on‐the‐fly. This enables the analyst to effectively navigate and explore the space of possible abstractions in large trajectory data sets. Additionally, we provide a proof of concept for supporting the analyst in determining the LoA semi‐automatically with a recommender system. Our approach is illustrated and evaluated by case studies, quantitative measures, and expert feedback. We further demonstrate that it allows analysts to solve a variety of analysis tasks in the domain of soccer.


international workshop on groupware | 2015

Crowdsourcing and Knowledge Co-creation in Virtual Museums

Daniel Biella; Daniel Sacher; Benjamin Weyers; Wolfram Luther; Nelson Baloian; Tobias Schreck

This paper gives an overview on crowdsourcing practices in virtual museums. Engaged nonprofessionals and specialists support curators in creating digital 2D or 3D exhibits, exhibitions and tour planning and enhancement of metadata using the Virtual Museum and Cultural Object Exchange Format (ViMCOX). ViMCOX provides the semantic structure of exhibitions and complete museums and includes new features, such as room and outdoor design, interactions with artwork, path planning and dissemination and presentation of contents. Application examples show the impact of crowdsourcing in the Museo de Arte Contemporaneo in Santiago de Chile and in the virtual museum depicting the life and work of the Jewish sculptor Leopold Fleischhacker. A further use case is devoted to crowd-based support for restoration of high-quality 3D shapes.

Collaboration


Dive into the Tobias Schreck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lin Shao

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge