Tobias Senkbeil
Ruhr University Bochum
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tobias Senkbeil.
Optics Express | 2012
A. Singer; F. Sorgenfrei; Adrian P. Mancuso; N. Gerasimova; Oleksandr Yefanov; J. Gulden; Thomas Gorniak; Tobias Senkbeil; A. Sakdinawat; Yongmin Liu; David T. Attwood; S. Dziarzhytski; D. D. Mai; Rolf Treusch; E. Weckert; Tim Salditt; Axel Rosenhahn; W. Wurth; I. A. Vartanyants
The experimental characterization of the spatial and temporal coherence properties of the free-electron laser in Hamburg (FLASH) at a wavelength of 8.0 nm is presented. Double pinhole diffraction patterns of single femtosecond pulses focused to a size of about 10×10 μm(2) were measured. A transverse coherence length of 6.2 ± 0.9 μm in the horizontal and 8.7 ± 1.0 μm in the vertical direction was determined from the most coherent pulses. Using a split and delay unit the coherence time of the pulses produced in the same operation conditions of FLASH was measured to be 1.75 ± 0.01 fs. From our experiment we estimated the degeneracy parameter of the FLASH beam to be on the order of 10(10) to 10(11), which exceeds the values of this parameter at any other source in the same energy range by many orders of magnitude.
Ultramicroscopy | 2013
Mike Beckers; Tobias Senkbeil; Thomas Gorniak; Klaus Giewekemeyer; Tim Salditt; Axel Rosenhahn
X-ray ptychography is a rapidly developing phase retrieval technique that combines the experimental advantages of coherent diffractive imaging with the possibility to image extended specimens. Data collection requires imaging at several scan points with high positional accuracy, which implies susceptibility to mechanical drift. This is a well-known problem in ptychographic scans, which can reduce reconstruction quality and limit the achievable resolution. Using a simple model for positional drift, we show that a set of corrected positions can be found systematically, leading to strong improvements in the reconstruction of a Siemens star dataset severely affected by drift.
PLOS ONE | 2014
Thomas Gorniak; Tamás Haraszti; Vasyl M. Garamus; Andreas R. Buck; Tobias Senkbeil; Marius Priebe; Adam Hedberg-Buenz; Demelza Koehn; Tim Salditt; Michael Grunze; Michael G. Anderson; Axel Rosenhahn
Melanosomes are highly specialized organelles that produce and store the pigment melanin, thereby fulfilling essential functions within their host organism. Besides having obvious cosmetic consequences – determining the color of skin, hair and the iris – they contribute to photochemical protection from ultraviolet radiation, as well as to vision (by defining how much light enters the eye). Though melanosomes can be beneficial for health, abnormalities in their structure can lead to adverse effects. Knowledge of their ultrastructure will be crucial to gaining insight into the mechanisms that ultimately lead to melanosome-related diseases. However, due to their small size and electron-dense content, physiologically intact melanosomes are recalcitrant to study by common imaging techniques such as light and transmission electron microscopy. In contrast, X-ray-based methodologies offer both high spatial resolution and powerful penetrating capabilities, and thus are well suited to study the ultrastructure of electron-dense organelles in their natural, hydrated form. Here, we report on the application of small-angle X-ray scattering – a method effective in determining the three-dimensional structures of biomolecules – to whole, hydrated murine melanosomes. The use of complementary information from the scattering signal of a large ensemble of suspended organelles and from single, vitrified specimens revealed a melanosomal sub-structure whose surface and bulk properties differ in two commonly used inbred strains of laboratory mice. Whereas melanosomes in C57BL/6J mice have a well-defined surface and are densely packed with 40-nm units, their counterparts in DBA/2J mice feature a rough surface, are more granular and consist of 60-nm building blocks. The fact that these strains have different coat colors and distinct susceptibilities to pigment-related eye disease suggest that these differences in size and packing are of biological significance.
Journal of Synchrotron Radiation | 2015
Max Rose; Petr Skopintsev; Dmitry Dzhigaev; Oleg Gorobtsov; Tobias Senkbeil; Andreas von Gundlach; Thomas Gorniak; Anatoly Shabalin; Jens Viefhaus; Axel Rosenhahn; I. A. Vartanyants
Water window ptychographic coherent diffractive imaging was demonstrated at the P04 beamline of PETRA III synchrotron radiation source. The beam coherence was characterized with the non-redundant array method.
Analytical and Bioanalytical Chemistry | 2016
Tobias Senkbeil; Tawheed Mohamed; R. Simon; David Batchelor; Alessio Di Fino; Nick Aldred; Anthony S. Clare; Axel Rosenhahn
Barnacles are able to establish stable surface contacts and adhere underwater. While the composition of adult barnacle cement has been intensively studied, far less is known about the composition of the cement of the settlement-stage cypris larva. The main challenge in studying the adhesives used by these larvae is the small quantity of material available for analysis, being on the order of nanograms. In this work, we applied, for the first time, synchrotron radiation-based μ-X-ray fluorescence analysis (SR-μ-XRF) for in vivo and in situ analysis of young barnacles and barnacle cyprids. To obtain biologically relevant information relating to the body tissues, adhesives, and shell of the organisms, an in situ sample environment was developed to allow direct microprobe investigation of hydrated specimens without pretreatment of the samples. In 8-day-old juvenile barnacles (Balanus improvisus), the junctions between the six plates forming the shell wall showed elevated concentrations of calcium, potassium, bromine, strontium, and manganese. Confocal measurements allowed elemental characterization of the adhesive interface of recently attached cyprids (Balanus amphitrite), and substantiated the accumulation of bromine both at the point of initial attachment as well as within the cyprid carapace. In situ measurements of the cyprid cement established the presence of bromine, chlorine, iodine, sulfur, copper, iron, zinc, selenium, and nickel for both species. The previously unrecognized presence of bromine, iron, and selenium in the cyprid permanent adhesive will hopefully inspire further biochemical investigations of the function of these substances.
Optics Express | 2018
Max Rose; Tobias Senkbeil; Andreas von Gundlach; Susan Stuhr; Christoph Rumancev; Dmitry Dzhigaev; Ilya Besedin; Petr Skopintsev; Lars Loetgering; Jens Viefhaus; Axel Rosenhahn; I. A. Vartanyants
Coherent X-ray ptychography is a tool for highly dose efficient lensless nano-imaging of biological samples. We have used partially coherent soft X-ray synchrotron radiation to obtain a quantitative image of a laterally extended, dried, and unstained fibroblast cell by ptychography. We used data with and without a beam stop that allowed us to measure coherent diffraction with a high-dynamic range of 1.7·106. As a quantitative result, we obtained the refractive index values for two regions of the cell with respect to a reference area. Due to the photon energy in the water window we obtained an extremely high contrast of 53% at 71 nm half-period resolution. The dose applied in our experiment was 9.5·104 Gy and is well below the radiation damage threshold. The concept for dynamic range improvement for low dynamic range detectors with a beam stop opens the path for high resolution nano-imaging of a variety of samples including cryo-preserved, hydrated and unstained biological cells.
Scientific Reports | 2018
Susan Stuhr; Vi Khanh Truong; Jitraporn Vongsvivut; Tobias Senkbeil; Yang Yang; Mohammad Al Kobaisi; Vladimir A. Baulin; Marco Werner; Sergey Rubanov; Mark J. Tobin; Peter Cloetens; Axel Rosenhahn; Robert N. Lamb; Pere Luque; Richard Marchant; Elena P. Ivanova
Insects represent the majority of known animal species and exploit a variety of fascinating nanotechnological concepts. We investigated the wings of the damselfly Calopteryx haemorrhoidalis, whose males have dark pigmented wings and females have slightly pigmented wings. We used scanning electron microscopy (SEM) and nanoscale synchrotron X-ray fluorescence (XRF) microscopy analysis for characterizing the nanostructure and the elemental distribution of the wings, respectively. The spatially resolved distribution of the organic constituents was examined by synchrotron Fourier transform infrared (s-FTIR) microspectroscopy and subsequently analyzed using hierarchical cluster analysis. The chemical distribution across the wing was rather uniform with no evidence of melanin in female wings, but with a high content of melanin in male wings. Our data revealed a fiber-like structure of the hairs and confirmed the presence of voids close to its base connecting the hairs to the damselfly wings. Within these voids, all detected elements were found to be locally depleted. Structure and elemental contents varied between wing membranes, hairs and veins. The elemental distribution across the membrane was rather uniform, with higher Ca, Cu and Zn levels in the male damselfly wing membranes.
arXiv: Optics | 2017
Max Rose; Dmitry Dzhigaev; Tobias Senkbeil; Andreas von Gundlach; Susan Stuhr; Christoph Rumancev; Ilya Besedin; Petr Skopintsev; Jens Viefhaus; Axel Rosenhahn; I. A. Vartanyants
Ptychographic imaging with soft X-rays, especially in the water window energy range, suffers from limited detector dynamic range that directly influences the maximum spatial resolution achievable. High-dynamic-range data can be obtained by multiple exposures. By this approach we have increased the dynamic range of a ptychographic data set by a factor of 76 and obtained diffraction signal till the corners of the detector. The real space half period resolution was improved from 50 nm for the single exposure data to 18 nm for the high-dynamic-range data.
RSC Advances | 2017
Christoph Rumancev; A.R. von Gundlach; Sina Baier; Arne Wittstock; Junjie Shi; Federico Benzi; Tobias Senkbeil; Susan Stuhr; V. M. Garamusx; Jan-Dierk Grunwaldt; Axel Rosenhahn
Nanoporous (np) gold is a promising catalyst material for selective oxidation reactions. Especially the addition of oxide deposits like ceria (CeO2) promises enhanced morphological stability for high temperature applications. Describing such temperature induced morphological changes in porous materials is challenging. Here, X-ray nanoanalysis is particularly promising due to the high penetration depth that allows studying of the bulk properties with high spatial sensitivity. We applied soft X-ray small angle scattering (SAXS) to determine temperature induced structural changes in nanoporous gold catalysts. The results show that CeO2 deposits enhance the temperature stability of the nanoporous gold catalyst. Moreover, we demonstrate the ability of soft X-rays to selectively provide structural information on the stabilizing cerium oxide deposits via resonant, anomalous SAXS (ASAXS) measurements at the cerium M-edge, revealing no growth of the ceria particles.
Physical Review Letters | 2011
Mike Beckers; Tobias Senkbeil; Thomas Gorniak; Michael Reese; Klaus Giewekemeyer; Sophie-Charlotte Gleber; Tim Salditt; Axel Rosenhahn