Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tobias Strid is active.

Publication


Featured researches published by Tobias Strid.


Biochemical and Biophysical Research Communications | 2009

Distinct parts of leukotriene C-4 synthase interact with 5-lipoxygenase and 5-lipoxygenase activating protein

Tobias Strid; Jesper Svartz; Niclas Franck; Elisabeth Hallin; Björn Ingelsson; Mats Söderström; Sven Hammarström

Leukotriene C(4) is a potent inflammatory mediator formed from arachidonic acid and glutathione. 5-Lipoxygenase (5-LO), 5-lipoxygenase activating protein (FLAP) and leukotriene C(4) synthase (LTC(4)S) participate in its biosynthesis. We report evidence that LTC(4)S interacts in vitro with both FLAP and 5-LO and that these interactions involve distinct parts of LTC(4)S. FLAP bound to the N-terminal part/first hydrophobic region of LTC(4)S. This part did not bind 5-LO which bound to the second hydrophilic loop of LTC(4)S. Fluorescent FLAP- and LTC(4)S-fusion proteins co-localized at the nuclear envelope. Furthermore, GFP-FLAP and GFP-LTC(4)S co-localized with a fluorescent ER marker. In resting HEK293/T or COS-7 cells GFP-5-LO was found mainly in the nuclear matrix. Upon stimulation with calcium ionophore, GFP-5-LO translocated to the nuclear envelope allowing it to interact with FLAP and LTC(4)S. Direct interaction of 5-LO and LTC(4)S in ionophore-stimulated (but not un-stimulated) cells was demonstrated by BRET using GFP-5-LO and Rluc-LTC(4)S.


Journal of Experimental Medicine | 2015

Combined heterozygous loss of Ebf1 and Pax5 allows for T-lineage conversion of B cell progenitors

Jonas Ungerbäck; Josefine Åhsberg; Tobias Strid; Rajesh Somasundaram; Mikael Sigvardsson

Ungerbäck et al. show that transcription factors Ebf1 and Pax5 act in a coordinated, dose-dependent manner to preserve B-lineage cell fate. Combined heterozygous loss of both transcription factors results in increased T cell lineage skewing in B cell progenitors.


Blood | 2015

Ebf1 heterozygosity results in increased DNA damage in pro-B cells and their synergistic transformation by Pax5 haploinsufficiency.

Mahadesh A. J. Prasad; Jonas Ungerbäck; Josefine Åhsberg; Rajesh Somasundaram; Tobias Strid; Malin Larsson; Robert Månsson; Ayla De Paepe; Henrik Lilljebjörn; Thoas Fioretos; James Hagman; Mikael Sigvardsson

Early B-cell factor 1 (Ebf1) is a transcription factor with documented dose-dependent functions in normal and malignant B-lymphocyte development. To understand more about the roles of Ebf1 in malignant transformation, we investigated the impact of reduced functional Ebf1 dosage on mouse B-cell progenitors. Gene expression analysis suggested that Ebf1 was involved in the regulation of genes important for DNA repair and cell survival. Investigation of the DNA damage in steady state, as well as after induction of DNA damage by UV light, confirmed that pro-B cells lacking 1 functional allele of Ebf1 display signs of increased DNA damage. This correlated to reduced expression of DNA repair genes including Rad51, and chromatin immunoprecipitation data suggested that Rad51 is a direct target for Ebf1. Although reduced dosage of Ebf1 did not significantly increase tumor formation in mice, a dramatic increase in the frequency of pro-B cell leukemia was observed in mice with combined heterozygous mutations in the Ebf1 and Pax5 genes, revealing a synergistic effect of combined dose reduction of these proteins. Our data suggest that Ebf1 controls DNA repair in a dose-dependent manner providing a possible explanation to the frequent involvement of EBF1 gene loss in human leukemia.


PLOS ONE | 2014

Orexin A Inhibits Propofol-Induced Neurite Retraction by a Phospholipase D/Protein Kinase Cε-Dependent Mechanism in Neurons

Karin Björnström; Dean Turina; Tobias Strid; Tommy Sundqvist; Christina Eintrei

Background The intravenous anaesthetic propofol retracts neurites and reverses the transport of vesicles in rat cortical neurons. Orexin A (OA) is an endogenous neuropeptide regulating wakefulness and may counterbalance anaesthesia. We aim to investigate if OA interacts with anaesthetics by inhibition of the propofol-induced neurite retraction. Methods In primary cortical cell cultures from newborn rats’ brains, live cell light microscopy was used to measure neurite retraction after propofol (2 µM) treatment with or without OA (10 nM) application. The intracellular signalling involved was tested using a protein kinase C (PKC) activator [phorbol 12-myristate 13-acetate (PMA)] and inhibitors of Rho-kinase (HA-1077), phospholipase D (PLD) [5-fluoro-2-indolyl des-chlorohalopemide (FIPI)], PKC (staurosporine), and a PKCε translocation inhibitor peptide. Changes in PKCε Ser729 phosphorylation were detected with Western blot. Results The neurite retraction induced by propofol is blocked by Rho-kinase and PMA. OA blocks neurite retraction induced by propofol, and this inhibitory effect could be prevented by FIPI, staurosporine and PKCε translocation inhibitor peptide. OA increases via PLD and propofol decreases PKCε Ser729 phosphorylation, a crucial step in the activation of PKCε. Conclusions Rho-kinase is essential for propofol-induced neurite retraction in cortical neuronal cells. Activation of PKC inhibits neurite retraction caused by propofol. OA blocks propofol-induced neurite retraction by a PLD/PKCε-mediated pathway, and PKCε maybe the key enzyme where the wakefulness and anaesthesia signal pathways converge.


BMC Neuroscience | 2012

Disruption of the alox5ap gene ameliorates focal ischemic stroke: possible consequence of impaired leukotriene biosynthesis

Jakob O. Ström; Tobias Strid; Sven Hammarström

BackgroundLeukotrienes are potent inflammatory mediators, which in a number of studies have been found to be associated with ischemic stroke pathology: gene variants affecting leukotriene synthesis, including the FLAP (ALOX5AP) gene, have in human studies shown correlation to stroke incidence, and animal studies have demonstrated protective properties of various leukotriene-disrupting drugs. However, no study has hitherto described a significant effect of a genetic manipulation of the leukotriene system on ischemic stroke. Therefore, we decided to compare the damage from focal cerebral ischemia between wild type and FLAP knockout mice. Damage was evaluated by infarct staining and a functional test after middle cerebral artery occlusion in 20 wild type and 20 knockout male mice.ResultsMortality-adjusted median infarct size was 18.4 (3.2-76.7) mm3 in the knockout group, compared to 72.0 (16.7-174.0) mm3 in the wild type group (p < 0.0005). There was also a tendency of improved functional score in the knockout group (p = 0.068). Analysis of bone marrow cells confirmed that knockout animals had lost their ability to form leukotrienes.ConclusionsSince the local inflammatory reaction after ischemic stroke is known to contribute to the brain tissue damage, the group difference seen in the current study could be a consequence of a milder inflammatory reaction in the knockout group. Our results add evidence to the notion that leukotrienes are important in ischemic stroke, and that blocked leukotriene production ameliorates cerebral damage.


Journal of Biological Chemistry | 2013

Early B-cell Factor 1 Regulates the Expansion of B-cell Progenitors in a Dose-dependent Manner

Josefine Åhsberg; Jonas Ungerbäck; Tobias Strid; Eva Welinder; Jenny Stjernberg; Malin Larsson; Hong Qian; Mikael Sigvardsson

Background: Transcription factor doses play important roles in normal and malignant B-lymphocyte development. Results: We show dose-dependent regulation of B-cell specification and expansion of committed progenitors. Conclusion: Transcription factor dose impacts several aspects of B-cell development. Significance: Knowing the effects of reduced transcription factor dose aids our understanding of the molecular events underlying leukemia and B-cell development. Transcription factor doses are of importance for normal and malignant B-lymphocyte development; however, the understanding of underlying mechanisms and functional consequences of reduced transcription factor levels is limited. We have analyzed progenitor and B-lineage compartments in mice carrying heterozygote mutations in the E2a, Ebf1, or Pax5 gene. Although lymphoid progenitors from Ebf1 or Pax5 heterozygote mice were specified and lineage-restricted in a manner comparable with Wt progenitors, this process was severely impaired in E2a heterozygote mutant mice. This defect was not significantly enhanced upon combined deletion of E2a with Ebf1 or Pax5. Analysis of the pre-B-cell compartment in Ebf1 heterozygote mice revealed a reduction in cell numbers. These cells expressed Pax5 and other B-lineage-associated genes, and global gene expression analysis suggested that the reduction of the pre-B-cell compartment was a result of impaired pre-B-cell expansion. This idea was supported by a reduction in IL2Rα-expressing late pre-B-cells as well as by cell cycle analysis and by the finding that the complexity of the VDJ rearrangement patterns was comparable in Wt and Ebf1+/− pre-B-cells, although the number of progenitors was reduced. Heterozygote deletion of Ebf1 resulted in impaired response to IL7 in vitro and reduced expression levels of pre-BCR on the cell surface, providing possible explanations for the observed stage-specific reduction in cellular expansion. Thus, transcription factor doses are critical for specification as well as expansion of B-lymphoid progenitors, providing increased insight into the molecular regulation of B-cell development.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Lymphocytes eject interferogenic mitochondrial DNA webs in response to CpG and non-CpG oligodeoxynucleotides of class C

Björn Ingelsson; Daniel Söderberg; Tobias Strid; Anita Söderberg; Ann-Charlotte Bergh; Vesa-Matti Loitto; Kourosh Lotfi; Mårten Segelmark; Giannis Spyrou; Anders Rosén

Significance Release of pathogen- and danger-associated molecular patterns (PAMPs and DAMPs) contributes to inflammatory responses and antiviral signaling. Mitochondrial DNA (mtDNA) is a potent DAMP molecule observed in blood circulation of trauma, autoimmune, HIV, and certain cancer patients. Here, we report a previously unrecognized lymphocyte feature that CpG and non-CpG oligodeoxynucleotides of class C promptly induce release of mtDNA as extracellular web-like structures. Lymphocyte mtDNA webs provoked antiviral type I IFN production in peripheral blood mononuclear cells but were devoid of bactericidal proteins. Notably, cells remained viable after the release. Our findings imply an alternative role for lymphocytes in antiviral signaling by utilizing their mtDNA as a rapid signaling molecule to communicate danger. Circulating mitochondrial DNA (mtDNA) is receiving increasing attention as a danger-associated molecular pattern in conditions such as autoimmunity, cancer, and trauma. We report here that human lymphocytes [B cells, T cells, natural killer (NK) cells], monocytes, and neutrophils derived from healthy blood donors, as well as B cells from chronic lymphocytic leukemia patients, rapidly eject mtDNA as web filament structures upon recognition of CpG and non-CpG oligodeoxynucleotides of class C. The release was quenched by ZnCl2, independent of cell death (apoptosis, necrosis, necroptosis, autophagy), and continued in the presence of TLR9 signaling inhibitors. B-cell mtDNA webs were distinct from neutrophil extracellular traps concerning structure, reactive oxygen species (ROS) dependence, and were devoid of antibacterial proteins. mtDNA webs acted as rapid (within minutes) messengers, priming antiviral type I IFN production. In summary, our findings point at a previously unrecognized role for lymphocytes in antimicrobial defense, utilizing mtDNA webs as signals in synergy with cytokines and natural antibodies, and cast light on the interplay between mitochondria and the immune system.


Current Opinion in Immunology | 2016

Exploring the multifaceted nature of the common lymphoid progenitor compartment

Christina T. Jensen; Tobias Strid; Mikael Sigvardsson

While the common lymphoid progenitor compartment was originally thought to be a rather homogenous cell population, it has become increasingly clear that this compartment is highly heterogeneous both with regard to phenotypic and functional features. The exploration of this cellular complexity has generated novel molecular insights into regulatory events in lymphoid lineage restriction and provided support for the idea that multiple lineage restriction events occur at this developmental stage. Furthermore, the identification of multiple lineage-restricted progenitors with mixed lineage potential challenges a strictly hierarchical model for lymphoid development. Instead we propose a model based on competence windows during which cell fates are established through the action of lineage determining factors.


Journal of Experimental Medicine | 2018

Dissection of progenitor compartments resolves developmental trajectories in B-lymphopoiesis

Christina T. Jensen; Josefine Åhsberg; Mikael N.E. Sommarin; Tobias Strid; Rajesh Somasundaram; Kazuki Okuyama; Jonas Ungerbäck; Jussi Kupari; Matti S. Airaksinen; Stefan Lang; David Bryder; Shamit Soneji; Göran Karlsson; Mikael Sigvardsson

To understand the developmental trajectories in early lymphocyte differentiation, we identified differentially expressed surface markers on lineage-negative lymphoid progenitors (LPs). Single-cell polymerase chain reaction experiments allowed us to link surface marker expression to that of lineage-associated transcription factors (TFs) and identify GFRA2 and BST1 as markers of early B cells. Functional analyses in vitro and in vivo as well as single-cell gene expression analyses supported that surface expression of these proteins defined distinct subpopulations that include cells from both the classical common LPs (CLPs) and Fraction A compartments. The formation of the GFRA2-expressing stages of development depended on the TF EBF1, critical both for the activation of stage-specific target genes and modulation of the epigenetic landscape. Our data show that consecutive expression of Ly6D, GFRA2, and BST1 defines a developmental trajectory linking the CLP to the CD19+ progenitor compartment.


Biochemical and Biophysical Research Communications | 2009

Fetal hepatic expression of 5-lipoxygenase activating protein is confined to colonizing hematopoietic cells

Tobias Strid; Cecilia Karlsson; Mats Söderström; Jie Zhang; Hong Qian; Mikael Sigvardsson; Sven Hammarström

Leukotriene C(4) is a potent inflammatory mediator formed from arachidonic acid and glutathione. 5-Lipoxygenase (5-LO), 5-lipoxygenase activating protein (FLAP) and leukotriene C(4) synthase (LTC(4)S) participate in its biosynthesis. We report evidence from insitu hybridization experiments that FLAP mRNA is abundantly expressed in fetal mouse liver from e11.5 until delivery. In contrast very little or no FLAP mRNA was detected in adult liver. The fetal expression in liver was not uniform but occurred in patches. Cells from e15.5 livers were fractionated by fluorescence activated cell sorting into hepatocytes and other CD45(-) cells and CD45(+) hematopoietic cells. The latter were further separated into immature (Lin(-)) and mature (Lin(+)) cells and analyzed for FLAP mRNA content by quantitative RT-PCR. FLAP mRNA expression was confined to CD45(+) cells and the mature cells had approximately 4-fold higher FLAP mRNA levels compared to the immature cells.

Collaboration


Dive into the Tobias Strid's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge