Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tobias T. Hägi is active.

Publication


Featured researches published by Tobias T. Hägi.


Bone | 2010

Cell-mediated BMP-2 liberation promotes bone formation in a mechanically unstable implant environment

Tobias T. Hägi; Gang Wu; Yuelian Liu; Ernst B. Hunziker

The flexible alloplastic materials that are used in bone-reconstruction surgery lack the mechanical stability that is necessary for sustained bone formation, even if this process is promoted by the application of an osteogenic agent, such as BMP-2. We hypothesize that if BMP-2 is delivered gradually, in a cell-mediated manner, to the surgical site, then the scaffolding materials lack of mechanical stability becomes a matter of indifference. Flexible discs of Ethisorb were functionalized with BMP-2, which was either adsorbed directly onto the material (rapid release kinetics) or incorporated into a calcium-phosphate coating (slow release kinetics). Unstabilized and titanium-plate-stabilized samples were implanted subcutaneously in rats and retrieved up to 14 days later for a histomorphometric analysis of bone and cartilage volumes. On day 14, the bone volume associated with titanium-plate-stabilized discs bearing an adsorbed depot of BMP-2 was 10-fold higher than that associated with their mechanically unstabilized counterparts. The bone volume associated with discs bearing a coating-incorporated depot of BMP-2 was similar in the mechanically unstabilized and titanium-plate-stabilized groups, and comparable to that associated with the titanium-plate-stabilized discs bearing an adsorbed depot of BMP-2. Hence, if an osteogenic agent is delivered in a cell-mediated manner (via coating degradation), ossification can be promoted even within a mechanically unstable environment.


Quintessence International | 2013

Clinical outcomes following subgingival application of a novel erythritol powder by means of air polishing in supportive periodontal therapy: a randomized, controlled clinical study.

Tobias T. Hägi; Petra Hofmänner; Giovanni E. Salvi; Christoph A. Ramseier; Anton Sculean

OBJECTIVES The aim of this prospective, randomized, controlled clinical study was to compare the clinical outcomes of the subgingival treatment with erythritol powder by means of an air-polishing (EPAP) device and of scaling and root planing (SRP) during supportive periodontal therapy (SPT). METHOD AND MATERIALS 40 patients enrolled in SPT were randomly assigned to two groups of equal size. Sites had to show signs of inflammation (bleeding on probing [BOP]-positive) and a probing pocket depth (PPD) of ≥ 4 mm, however, without presence of detectable subgingival calculus. During SPT, these sites were treated with EPAP or SRP, respectively. Full mouth and site-specific plaque indices, BOP, PPD, and clinical attachment level (CAL) were recorded at baseline (BL) and at 3 months, whereas the percentage of study sites positive for BOP (BOP+) was considered as primary outcome variable. Additionally, patient comfort using a visual analog scale (VAS) and the time needed to treat per site was evaluated. RESULTS At 3 months, mean BOP level measured 45.1% at test sites and 50.6% at control sites, respectively, without a statistically significant difference between the groups (P > .05). PPD and CAL slightly improved for both groups with comparable mean values at 3 months. Evaluation of patient tolerance showed statistically significantly better values among patients receiving the test treatment (mean VAS [0-10], 1.51) compared to SRP (mean VAS [0-10], 3.66; P = .0012). The treatment of test sites was set to 5 seconds per site. The treatment of control sites, on the other hand, lasted 85 seconds on average. CONCLUSION The new erythritol powder applied with an air-polishing device can be considered a promising modality for repeated instrumentation of residual pockets during SPT. CLINICAL RELEVANCE With regard to clinical outcomes during SPT, similar results can be expected irrespective of the two treatment approaches of hand instrumentation or subgingival application of erythritol powder with an air-polishing device in sites where only biofilm removal is required.


Quintessence International | 2015

The effects of erythritol air-polishing powder on microbiologic and clinical outcomes during supportive periodontal therapy: Six-month results of a randomized controlled clinical trial.

Tobias T. Hägi; Petra Hofmänner; Sigrun Eick; Marcel Donnet; Giovanni Edoardo Salvi; Anton Sculean; Christoph A. Ramseier

OBJECTIVES To characterize the physical characteristics of a new low abrasive erythritol powder (EPAP) and to evaluate its influence on the clinical and microbiologic parameters over a period of 6 months in patients undergoing supportive periodontal therapy (SPT). METHOD AND MATERIALS Prior to the clinical application, the particle size and abrasion level of EPAP were compared to glycine air-polishing powder (GPAP) ex vivo. Subsequently, 40 chronic periodontitis patients previously enrolled in SPT were randomly assigned into two groups for the treatment with subgingival EPAP or repeated scaling and root planing (SRP). At baseline (BL), bleeding on probing positive (BOP+) sites with probing pocket depth (PPD) of ≥ 4 mm but no detectable calculus were defined as study sites. During SPT, these sites were either treated by EPAP or SRP at BL, 3, and 6 months (3M, 6M). When indicated, additional SRP was provided. Plaque Index, BOP, PPD, clinical attachment level (CAL), and subgingival plaque were evaluated at BL and 6M. RESULTS EPAP yielded lower abrasiveness and smaller particle sizes when compared to GPAP. In 38 patients completing the study, EPAP and SRP resulted in significant reductions of BOP% (EPAP, 40.45%; SRP, 42.53%), PPD (EPAP, -0.67; SRP, -0.68), and increase of CAL (EPAP, 0.48; SRP, 0.61) while at 6M no statistically significant between-group differences were observed (P > .05). Microbiologic evaluation revealed minor shifts in the composition of the subgingival biofilm without influence on periodontopathogenic bacteria. CONCLUSION The subgingival use of EPAP by means of an air-polishing device may be considered safe and may lead to comparable clinical and microbiologic outcomes to those obtained with SRP. CLINICAL RELEVANCE The subgingival use of EPAP appears to represent a promising modality for the removal of subgingival biofilm during SPT.


PLOS ONE | 2015

A Biofilm Pocket Model to Evaluate Different Non-Surgical Periodontal Treatment Modalities in Terms of Biofilm Removal and Reformation, Surface Alterations and Attachment of Periodontal Ligament Fibroblasts

Tobias T. Hägi; Sabrina Klemensberger; Riccarda Nathalie Bereiter; Sandor Nietzsche; Raluca Cosgarea; Simon Flury; Adrian Lussi; Anton Sculean; Sigrun Eick

Background and Aim There is a lack of suitable in vitro models to evaluate various treatment modalities intending to remove subgingival bacterial biofilm. Consequently, the aims of this in vitro-study were: a) to establish a pocket model enabling mechanical removal of biofilm and b) to evaluate repeated non-surgical periodontal treatment with respect to biofilm removal and reformation, surface alterations, tooth hard-substance-loss, and attachment of periodontal ligament (PDL) fibroblasts. Material and Methods Standardized human dentin specimens were colonized by multi-species biofilms for 3.5 days and subsequently placed into artificially created pockets. Non-surgical periodontal treatment was performed as follows: a) hand-instrumentation with curettes (CUR), b) ultrasonication (US), c) subgingival air-polishing using erythritol (EAP) and d) subgingival air-polishing using erythritol combined with chlorhexidine digluconate (EAP-CHX). The reduction and recolonization of bacterial counts, surface roughness (Ra and Rz), the caused tooth substance-loss (thickness) as well as the attachment of PDL fibroblasts were evaluated and statistically analyzed by means of ANOVA with Post-Hoc LSD. Results After 5 treatments, bacterial reduction in biofilms was highest when applying EAP-CHX (4 log10). The lowest reduction was found after CUR (2 log10). Additionally, substance-loss was the highest when using CUR (128±40 µm) in comparison with US (14±12 µm), EAP (6±7 µm) and EAP-CHX (11±10) µm). Surface was roughened when using CUR and US. Surfaces exposed to US and to EAP attracted the highest numbers of PDL fibroblasts. Conclusion The established biofilm model simulating a periodontal pocket combined with interchangeable placements of test specimens with multi-species biofilms enables the evaluation of different non-surgical treatment modalities on biofilm removal and surface alterations. Compared to hand instrumentation the application of ultrasonication and of air-polishing with erythritol prevents from substance-loss and results in a smooth surface with nearly no residual biofilm that promotes the reattachment of PDL fibroblasts.


Quintessence International | 2014

Regenerative periodontal therapy.

Tobias T. Hägi; Oliver Laugisch; Aleksandar Ivanovic; Anton Sculean

The goal of regenerative periodontal therapy is to completely restore the tooths supporting apparatus that has been lost due to inflammatory periodontal disease or injury. It is characterized by formation of new cementum with inserting collagen fibers, new periodontal ligament, and new alveolar bone. Indeed conventional, nonsurgical, and surgical periodontal therapy usually result in clinical improvements evidenced by probing depth reduction and clinical attachment gain, but the healing occurs predominantly through formation of a long junctional epithelium and no or only unpredictable periodontal regeneration. Therefore, there is an ongoing search for new materials and improved surgical techniques, with the aim of predictably promoting periodontal wound healing/regeneration and improving the clinical outcome. This article attempts to provide the clinician with an overview of the most important biologic events involved in periodontal wound healing/ regeneration and on the criteria on how to select the appropriate regenerative material and surgical technique in order to optimize the clinical outcomes.


Dental Materials | 2009

Mold filling and dimensional accuracy of titanium castings in a spinel-based investment

Jens Fischer; Andreas Ebinger; Tobias T. Hägi; Bogna Stawarczyk; Andreas Wenger; Egbert Keller

OBJECTIVES Aim of the study was to analyze the mold filling capacity and the dimensional accuracy of a spinel-based investment for titanium castings. METHODS Expansion of the investment in dependence of the preheating temperature was measured in a dilatometer. The degree of transformation of MgO and Al2O3 to spinel (MgAl2O4) was evaluated by means of X-ray powder diffraction. Mold filling capacity was assessed by casting a grid and calculating the percentage of completed segments. Dimensional accuracy was analyzed by casting a hollow cylinder and measuring the difference between the inner diameter of the resin pattern and the resulting titanium casting. RESULTS Spinel formation starts at 819 degrees C. Diffraction patterns prove the formation of spinel from MgO and Al2O3. The amount of spinel increases with increasing preheating temperature. The final expansion of the investment at the end of the preheating cycle at 450 degrees C shows a linear correlation to the maximum preheating temperature. The degree of mold filling is reciprocal to the preheating temperature. The dimensional accuracy shows a linear correlation to the amount of spinel. Best dimensional accuracy was obtained at about 900 degrees C. After a preheating temperature of 884 degrees C, as recommended by the manufacturer, the cast specimens showed a slightly lower inner diameter as compared to the resin patterns. SIGNIFICANCE The results suggest that with the spinel investment analyzed an excellent accuracy of titanium castings may be obtained.


Clinical Oral Investigations | 2016

Effects of two different post-surgical protocols including either 0.05 % chlorhexidine herbal extract or 0.1 % chlorhexidine on post-surgical plaque control, early wound healing and patient acceptance following standard periodontal surgery and implant placement.

Oliver Laugisch; Christoph A. Ramseier; Giovanni Edoardo Salvi; Tobias T. Hägi; Walter Bürgin; Sigrun Eick; Anton Sculean


Quintessence: Publicación internacional de odontología | 2005

Tratamiento periodontal regenerativo

Tobias T. Hägi; Oliver Laugisch; Aleksandar Ivanovic; Anton Sculean


Quintessence: Publicación internacional de odontología | 2015

Efectos del polvo de pulido de eritritol/aire en los resultados microbiológicos y clínicos durante el tratamiento de soporte periodontal: Resultados a los seis meses de un ensayo clínico controlado aleatorizado

Tobias T. Hägi; Petra Hofmänner; Sigrun Eick; Marcel Donnet; Giovanni E. Salvi; Anton Scutean; Christoph A. Ramseier


Quintessence: Publicación internacional de odontología | 2013

Estrategias de evaluación del riesgo para la optimización del mantenimiento periodontal

Tobias T. Hägi; Anton Scutean; Christoph A. Ramseier

Collaboration


Dive into the Tobias T. Hägi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge