Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tobias Würschum is active.

Publication


Featured researches published by Tobias Würschum.


The Plant Cell | 2004

Genetic Regulation of Embryonic Pattern Formation

Thomas Laux; Tobias Würschum; Holger Breuninger

During plant embryogenesis, a simple body plan is established that consists of shoot meristem, cotyledons, hypocotyl, root, and root meristem along the apical–basal axis and a concentric arrangement of epidermis, subepidermal ground tissue, and central vascular cylinder along the radial axis. To


Theoretical and Applied Genetics | 2012

Accuracy of genomic selection in European maize elite breeding populations

Yusheng Zhao; Manje Gowda; Wenxin Liu; Tobias Würschum; Hans Peter Maurer; Friedrich H. Longin; Nicolas Ranc; Jochen C. Reif

Genomic selection is a promising breeding strategy for rapid improvement of complex traits. The objective of our study was to investigate the prediction accuracy of genomic breeding values through cross validation. The study was based on experimental data of six segregating populations from a half-diallel mating design with 788 testcross progenies from an elite maize breeding program. The plants were intensively phenotyped in multi-location field trials and fingerprinted with 960 SNP markers. We used random regression best linear unbiased prediction in combination with fivefold cross validation. The prediction accuracy across populations was higher for grain moisture (0.90) than for grain yield (0.58). The accuracy of genomic selection realized for grain yield corresponds to the precision of phenotyping at unreplicated field trials in 3–4 locations. As for maize up to three generations are feasible per year, selection gain per unit time is high and, consequently, genomic selection holds great promise for maize breeding programs.


Theoretical and Applied Genetics | 2012

Mapping QTL for agronomic traits in breeding populations

Tobias Würschum

Detection of quantitative trait loci (QTL) in breeding populations offers the advantage that these QTL are of direct relevance for the improvement of crops via knowledge-based breeding. As phenotypic data are routinely generated in breeding programs and the costs for genotyping are constantly decreasing, it is tempting to exploit this information to unravel the genetic architecture underlying important agronomic traits in crops. This review characterizes the germplasm from breeding populations available for QTL detection, provides a classification of the different QTL mapping approaches that are available, and highlights important considerations concerning study design and biometrical models suitable for QTL analysis.


The Plant Cell | 2006

APETALA2 Regulates the Stem Cell Niche in the Arabidopsis Shoot Meristem

Tobias Würschum; Rita Groß-Hardt; Thomas Laux

Postembryonic organ formation in higher plants relies on the activity of stem cell niches in shoot and root meristems where differentiation of the resident cells is repressed by signals from surrounding cells. We searched for mutations affecting stem cell maintenance and isolated the semidominant l28 mutant, which displays premature termination of the shoot meristem and differentiation of the stem cells. Allele competition experiments suggest that l28 is a dominant-negative allele of the APETALA2 (AP2) gene, which previously has been implicated in floral patterning and seed development. Expression of both WUSCHEL (WUS) and CLAVATA3 (CLV3) genes, which regulate stem cell maintenance in the wild type, were disrupted in l28 shoot apices from early stages on. Unlike in floral patterning, AP2 mRNA is active in the center of the shoot meristem and acts via a mechanism independent of AGAMOUS, which is a repressor of WUS and stem cell maintenance in the floral meristem. Genetic analysis shows that termination of the primary shoot meristem in l28 mutants requires an active CLV signaling pathway, indicating that AP2 functions in stem cell maintenance by modifying the WUS-CLV3 feedback loop.


Sensors | 2013

BreedVision--a multi-sensor platform for non-destructive field-based phenotyping in plant breeding.

Lucas Busemeyer; Daniel Mentrup; Kim Möller; Erik Wunder; Katharina V. Alheit; Volker Hahn; Hans Peter Maurer; Jochen C. Reif; Tobias Würschum; Joachim Müller; Florian Rahe; Arno Ruckelshausen

To achieve the food and energy security of an increasing World population likely to exceed nine billion by 2050 represents a major challenge for plant breeding. Our ability to measure traits under field conditions has improved little over the last decades and currently constitutes a major bottleneck in crop improvement. This work describes the development of a tractor-pulled multi-sensor phenotyping platform for small grain cereals with a focus on the technological development of the system. Various optical sensors like light curtain imaging, 3D Time-of-Flight cameras, laser distance sensors, hyperspectral imaging as well as color imaging are integrated into the system to collect spectral and morphological information of the plants. The study specifies: the mechanical design, the system architecture for data collection and data processing, the phenotyping procedure of the integrated system, results from field trials for data quality evaluation, as well as calibration results for plant height determination as a quantified example for a platform application. Repeated measurements were taken at three developmental stages of the plants in the years 2011 and 2012 employing triticale (×Triticosecale Wittmack L.) as a model species. The technical repeatability of measurement results was high for nearly all different types of sensors which confirmed the high suitability of the platform under field conditions. The developed platform constitutes a robust basis for the development and calibration of further sensor and multi-sensor fusion models to measure various agronomic traits like plant moisture content, lodging, tiller density or biomass yield, and thus, represents a major step towards widening the bottleneck of non-destructive phenotyping for crop improvement and plant genetic studies.


BMC Genomics | 2011

Detection of segregation distortion loci in triticale (x Triticosecale Wittmack) based on a high-density DArT marker consensus genetic linkage map

Katharina V. Alheit; Jochen C. Reif; Hans Peter Maurer; Volker Hahn; Elmar A. Weissmann; Thomas Miedaner; Tobias Würschum

BackgroundTriticale is adapted to a wide range of abiotic stress conditions, is an important high-quality feed stock and produces similar grain yield but more biomass compared to other crops. Modern genomic approaches aimed at enhancing breeding progress in cereals require high-quality genetic linkage maps. Consensus maps are genetic maps that are created by a joint analysis of the data from several segregating populations and different approaches are available for their construction. The phenomenon that alleles at a locus deviate from the Mendelian expectation has been defined as segregation distortion. The study of segregation distortion is of particular interest in doubled haploid (DH) populations due to the selection pressure exerted on the plants during the process of their establishment.ResultsThe final consensus map, constructed out of six segregating populations derived from nine parental lines, incorporated 2555 DArT markers mapped to 2602 loci (1929 unique). The map spanned 2309.9 cM with an average number of 123.9 loci per chromosome and an average marker density of one unique locus every 1.2 cM. The R genome showed the highest marker coverage followed by the B genome and the A genome. In general, locus order was well maintained between the consensus linkage map and the component maps. However, we observed several groups of loci for which the colinearity was slightly uneven. Among the 2602 loci mapped on the consensus map, 886 showed distorted segregation in at least one of the individual mapping populations. In several DH populations derived by androgenesis, we found chromosomes (2B, 3B, 1R, 2R, 4R and 7R) containing regions where markers exhibited a distorted segregation pattern. In addition, we observed evidence for segregation distortion between pairs of loci caused either by a predominance of parental or recombinant genotypes.ConclusionsWe have constructed a reliable, high-density DArT marker consensus genetic linkage map as a basis for genomic approaches in triticale research and breeding, for example for multiple-line cross QTL mapping experiments. The results of our study exemplify the tremendous impact of different DH production techniques on allele frequencies and segregation distortion covering whole chromosomes.


Theoretical and Applied Genetics | 2011

Association mapping for quality traits in soft winter wheat

Jochen C. Reif; Manje Gowda; Hans Peter Maurer; Carl Friedrich Horst Longin; Viktor Korzun; Erhard Ebmeyer; Reiner Bothe; Christof Pietsch; Tobias Würschum

Improvement of end-use quality in bread wheat (Triticum aestivum L.) depends on a thorough understanding of the genetic basis of important quality traits. The main goal of our study was to investigate the genetic basis of 1,000-kernel weight, protein content, sedimentation volume, test weight, and starch concentration using an association mapping approach. We fingerprinted 207 diverse European elite soft winter wheat lines with 115 SSR markers and evaluated the genotypes in multi-environment trials. The principal coordinate analysis revealed absence of a clear population but presence of a family structure. Therefore, we used linear mixed models and marker-based kinship matrices to correct for family structure. In genome-wide scans, we detected main effect QTL for all five traits. In contrast, epistatic QTL were only observed for sedimentation volume and test weight explaining a small proportion of the genotypic variation. Consequently, our findings suggested that integrating epistasis in marker-assisted breeding will not lead to substantially increased selection gain for quality traits in soft winter wheat.


Theoretical and Applied Genetics | 2011

Mapping QTLs with main and epistatic effects underlying grain yield and heading time in soft winter wheat

Jochen C. Reif; Hans Peter Maurer; Viktor Korzun; Erhard Ebmeyer; Thomas Miedaner; Tobias Würschum

There is increasing awareness that epistasis plays a role for the determination of complex traits. This study employed an association mapping approach in a large panel of 455 diverse European elite soft winter wheat lines. The genotypes were evaluated in multi-environment trials and fingerprinted with SSR markers to dissect the underlying genetic architecture of grain yield and heading time. A linear mixed model was applied to assess marker-trait associations incorporating information of covariance among relatives. Our findings indicate that main effects dominate the control of grain yield in wheat. In contrast, the genetic architecture underlying heading time is controlled by main and epistatic effects. Consequently, for heading time it is important to consider epistatic effects towards an increased selection gain in marker-assisted breeding.


BMC Genetics | 2013

Genomic selection in sugar beet breeding populations

Tobias Würschum; Jochen C. Reif; Thomas Kraft; Geert Janssen; Yusheng Zhao

BackgroundGenomic selection exploits dense genome-wide marker data to predict breeding values. In this study we used a large sugar beet population of 924 lines representing different germplasm types present in breeding populations: unselected segregating families and diverse lines from more advanced stages of selection. All lines have been intensively phenotyped in multi-location field trials for six agronomically important traits and genotyped with 677 SNP markers.ResultsWe used ridge regression best linear unbiased prediction in combination with fivefold cross-validation and obtained high prediction accuracies for all except one trait. In addition, we investigated whether a calibration developed based on a training population composed of diverse lines is suited to predict the phenotypic performance within families. Our results show that the prediction accuracy is lower than that obtained within the diverse set of lines, but comparable to that obtained by cross-validation within the respective families.ConclusionsThe results presented in this study suggest that a training population derived from intensively phenotyped and genotyped diverse lines from a breeding program does hold potential to build up robust calibration models for genomic selection. Taken together, our results indicate that genomic selection is a valuable tool and can thus complement the genomics toolbox in sugar beet breeding.


Scientific Reports | 2013

Precision phenotyping of biomass accumulation in triticale reveals temporal genetic patterns of regulation.

Lucas Busemeyer; Arno Ruckelshausen; Kim Möller; Albrecht E. Melchinger; Katharina V. Alheit; Hans Peter Maurer; Volker Hahn; Elmar A. Weissmann; Jochen C. Reif; Tobias Würschum

To extend agricultural productivity by knowledge-based breeding and tailor varieties adapted to specific environmental conditions, it is imperative to improve our ability to assess the dynamic changes of the phenome of crops under field conditions. To this end, we have developed a precision phenotyping platform that combines various sensors for a non-invasive, high-throughput and high-dimensional phenotyping of small grain cereals. This platform yielded high prediction accuracies and heritabilities for biomass of triticale. Genetic variation for biomass accumulation was dissected with 647 doubled haploid lines derived from four families. Employing a genome-wide association mapping approach, two major quantitative trait loci (QTL) for biomass were identified and the genetic architecture of biomass accumulation was found to be characterized by dynamic temporal patterns. Our findings highlight the potential of precision phenotyping to assess the dynamic genetics of complex traits, especially those not amenable to traditional phenotyping.

Collaboration


Dive into the Tobias Würschum's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Volker Hahn

University of Hohenheim

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenxin Liu

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Manje Gowda

University of Hohenheim

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge