Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tobias Zech is active.

Publication


Featured researches published by Tobias Zech.


The EMBO Journal | 2009

Accumulation of raft lipids in T‐cell plasma membrane domains engaged in TCR signalling

Tobias Zech; Christer S. Ejsing; Katharina Gaus; Ben de Wet; Andrej Shevchenko; Kai Simons; Thomas Harder

Activating stimuli for T lymphocytes are transmitted through plasma membrane domains that form at T‐cell antigen receptor (TCR) signalling foci. Here, we determined the molecular lipid composition of immunoisolated TCR activation domains. We observed that they accumulate cholesterol, sphingomyelin and saturated phosphatidylcholine species as compared with control plasma membrane fragments. This provides, for the first time, direct evidence that TCR activation domains comprise a distinct molecular lipid composition reminiscent of liquid‐ordered raft phases in model membranes. Interestingly, TCR activation domains were also enriched in plasmenyl phosphatidylethanolamine and phosphatidylserine. Modulating the T‐cell lipidome with polyunsaturated fatty acids impaired the plasma membrane condensation at TCR signalling foci and resulted in a perturbed molecular lipid composition. These results correlate the accumulation of specific molecular lipid species with the specific plasma membrane condensation at sites of TCR activation and with early TCR activation responses.


Molecular Membrane Biology | 2006

Visualizing membrane microdomains by Laurdan 2-photon microscopy (Review)

Katharina Gaus; Tobias Zech; Thomas Harder

Lateral segregation of cell membrane components gives rise to microdomains with a different structure within the membrane. Most prominently, lipid rafts are defined as domains in liquid ordered phase whereas surrounding membranes are more fluid. Here we review a 2-photon fluorescence microscopy approach, which allows the visualization of membrane fluidity. The fluorescent probe Laurdan exhibits a blue shift in emission with increasing membrane condensation caused by an alteration in the dipole moment of the probe as a consequence of exclusion of water molecules from the lipid bilayer. The quantification of membrane order is achieved by the Generalized Polarization (GP) values, which are defined as normalized intensity ratios of two emission channels. GP images are therefore not biased by probe concentrations and membrane ruffles. Furthermore, Laurdan reports membrane structure independently from the lipid and protein cargo of the membrane domains. We give examples where Laurdan microscopy was instrumental in quantifying the formation of condensed membrane domains and their cellular requirements. Moreover we discuss how microdomains identified by Laurdan microscopy are consistent with domains identified by other methodologies and put GP images in the context of current raft hypotheses.


Journal of Cell Biology | 2011

Actin polymerization driven by WASH causes V-ATPase retrieval and vesicle neutralization before exocytosis

Michael Carnell; Tobias Zech; Simon D. J. Calaminus; Seiji Ura; Monica Hagedorn; Simon A. Johnston; Robin C. May; Thierry Soldati; Laura M. Machesky; Robert H. Insall

WASH coats mature lysosomes and is required for exocytosis of indigestible material.


Journal of Cell Biology | 2012

N-WASP coordinates the delivery and F-actin–mediated capture of MT1-MMP at invasive pseudopods

Xinzi Yu; Tobias Zech; Laura McDonald; Esther González; Ang Li; Iain R. Macpherson; Juliane P. Schwarz; Heather J. Spence; Kinga Futó; Paul Timpson; Colin Nixon; Yafeng Ma; Inés M. Antón; Balázs Visegrády; Robert H. Insall; Karin A. Oien; Karen Blyth; Jim C. Norman; Laura M. Machesky

N-WASP is critical for cancer cell invasion through its promotion of the trafficking and capture of MT1-MMP in invasive pseudopods.


Journal of Cell Science | 2011

The Arp2/3 activator WASH regulates α5β1-integrin-mediated invasive migration

Tobias Zech; Simon D. J. Calaminus; Patrick T. Caswell; Heather J. Spence; Michael Carnell; Robert H. Insall; Jim C. Norman; Laura M. Machesky

The actin cytoskeleton provides scaffolding and physical force to effect fundamental processes such as motility, cytokinesis and vesicle trafficking. The Arp2/3 complex nucleates actin structures and contributes to endocytic vesicle invagination and trafficking away from the plasma membrane. Internalisation and directed recycling of integrins are major driving forces for invasive cell motility and potentially for cancer metastasis. Here, we describe a direct requirement for WASH and Arp2/3-mediated actin polymerisation on the endosomal membrane system for α5β1 integrin recycling. WASH regulates the trafficking of endosomal α5β1 integrin to the plasma membrane and is fundamental for integrin-driven cell morphology changes and integrin-mediated cancer cell invasion. Thus, we implicate WASH and Arp2/3-driven actin nucleation in receptor recycling leading to invasive motility.


PLOS ONE | 2008

Functional implications of plasma membrane condensation for T cell activation.

Carles Rentero; Tobias Zech; Carmel M. Quinn; Karin R. Engelhardt; David Williamson; Thomas Grewal; Wendy Jessup; Thomas Harder; Katharina Gaus

The T lymphocyte plasma membrane condenses at the site of activation but the functional significance of this receptor-mediated membrane reorganization is not yet known. Here we demonstrate that membrane condensation at the T cell activation sites can be inhibited by incorporation of the oxysterol 7-ketocholesterol (7KC), which is known to prevent the formation of raft-like liquid-ordered domains in model membranes. We enriched T cells with 7KC, or cholesterol as control, to assess the importance of membrane condensation for T cell activation. Upon 7KC treatment, T cell antigen receptor (TCR) triggered calcium fluxes and early tyrosine phosphorylation events appear unaltered. However, signaling complexes form less efficiently on the cell surface, fewer phosphorylated signaling proteins are retained in the plasma membrane and actin restructuring at activation sites is impaired in 7KC-enriched cells resulting in compromised downstream activation responses. Our data emphasizes lipids as an important medium for the organization at T cell activation sites and strongly indicates that membrane condensation is an important element of the T cell activation process.


Current Biology | 2013

Loss of Scar/WAVE Complex Promotes N-WASP- and FAK-Dependent Invasion

Haoran Tang; Ang Li; Jing Bi; Douwe M. Veltman; Tobias Zech; Heather J. Spence; Xinzi Yu; Paul Timpson; Robert H. Insall; Margaret C. Frame; Laura M. Machesky

BACKGROUND The Scar/WAVE regulatory complex (WRC) drives lamellipodia assembly via the Arp2/3 complex, whereas the Arp2/3 activator N-WASP is not essential for 2D migration but is increasingly implicated in 3D invasion. It is becoming ever more apparent that 2D and 3D migration utilize the actin cytoskeletal machinery differently. RESULTS We discovered that WRC and N-WASP play opposing roles in 3D epithelial cell migration. WRC depletion promoted N-WASP/Arp2/3 complex activation and recruitment to leading invasive edges and increased invasion. WRC disruption also altered focal adhesion dynamics and drove FAK activation at leading invasive edges. We observed coalescence of focal adhesion components together with N-WASP and Arp2/3 complex at leading invasive edges in 3D. Unexpectedly, WRC disruption also promoted FAK-dependent cell transformation and tumor growth in vivo. CONCLUSIONS N-WASP has a crucial proinvasive role in driving Arp2/3 complex-mediated actin assembly in cooperation with FAK at invasive cell edges, but WRC depletion can promote 3D cell motility.


Journal of Biological Chemistry | 2004

Recognition Sequences for the GYF Domain Reveal a Possible Spliceosomal Function of CD2BP2

Michael Kofler; Katja Heuer; Tobias Zech; Christian Freund

Protein-protein interactions are often mediated by small domains that recognize solvent-exposed peptide sequences. Deciphering the recognition code for these adapter domains is an important step in the understanding of multi-protein assemblies. Here, we investigate the sequence requirements for the CD2BP2-GYF domain, a proline-rich sequence binding module previously shown to be involved in T cell signaling. We show that the signature (R/K/G)XXPPGX(R/K) defines a preferred peptide-binding motif that is present in several proteins of the splicing machinery. Specifically, the core small nuclear ribonucleoprotein, SmB/B′, contains several PPP-PGMR motifs that interact with the CD2BP2-GYF domain in vitro and in vivo. The colocalization of CD2BP2 and SmB proteins in the nucleus of Jurkat T cells and HeLa cells suggests a function of the GYF domain of CD2BP2 in mediating protein-protein interactions within the spliceosome.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Gadkin negatively regulates cell spreading and motility via sequestration of the actin-nucleating ARP2/3 complex

Tanja Maritzen; Tobias Zech; Michael R. Schmidt; Eberhard Krause; Laura M. Machesky; Volker Haucke

Regulation of actin dynamics is key to many cell physiological processes, ranging from protrusion formation and control of cell shape to cellular motility, endocytosis, and vesicle movement. The actin-related protein (ARP)2/3 complex is a major actin nucleator organizing branched filament networks in lamellipodial protrusions and during cell migration downstream of nucleation-promoting factors (NPFs). Although many NPFs have been characterized in detail, only few ARP2/3 inhibitors are known. Here, we identify the trans-Golgi network (TGN)/endosomally localized adaptor protein (AP)-1-associated adaptor protein Gadkin as a negative regulator of ARP2/3 function. Loss of Gadkin is associated with a partial redistribution of ARP2/3 to the plasma membrane and with increased cell spreading and migration, phenotypes that depend on the presence of a functional ARP2/3 complex. Gadkin directly binds to ARP2/3 via a conserved tryptophan-based acidic cluster motif reminiscent of ARP2/3-binding sequences of NPFs but fails to facilitate ARP2/3-mediated actin assembly. Consistent with an inhibitory role of Gadkin on ARP2/3 function, ARP2/3 is found on motile Gadkin-containing endosomal vesicles under migration-inhibiting conditions from where it relocalizes to the plasma membrane following activation of NPFs. Together with the observation that Gadkin-mediated inhibition of cell spreading requires its binding to ARP2/3, these data indicate that Gadkin is a negative regulator of ARP2/3 function present on intracellular membranes.


Journal of Biological Chemistry | 2011

Proteomic Characterization of Plasma Membrane-proximal T Cell Activation Responses

Ben de Wet; Tobias Zech; Mogjiborahman Salek; Oreste Acuto; Thomas Harder

Early downstream responses of T lymphocytes following T cell antigen receptor (TCR) activation are mediated by protein complexes that assemble in domains of the plasma membrane. Using stable isotope labeling with amino acids in cell culture and mass spectrometry, we quantitatively related the proteome of αCD3 immunoisolated native TCR signaling plasma membrane domains to that of control plasma membrane fragments not engaged in TCR signaling. Proteins were sorted according to their relative enrichment in isolated TCR signaling plasma membrane domains, identifying a complex protein network that is anchored in the vicinity of activated TCR. These networks harbor widespread mediators of plasma membrane-proximal T cell activities, including propagation, balancing, and attenuation of TCR signaling, immune synapse formation, as well as cytoskeletal arrangements relative to TCR activation clusters. These results highlight the unique potential of systematic characterizations of plasma membrane-proximal T cell activation proteome in the context of its native lipid bilayer platform.

Collaboration


Dive into the Tobias Zech's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katharina Gaus

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xinzi Yu

University of Glasgow

View shared research outputs
Top Co-Authors

Avatar

Michael Carnell

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Ang Li

University of Glasgow

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge