Toby Holmes
University College Dublin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Toby Holmes.
Stem Cells | 2007
Raymond D. Lund; Shaomei Wang; Bin Lu; S. Girman; Toby Holmes; Yves Sauve; Darin J. Messina; Ian R. Harris; Anthony J. Kihm; Alexander M. Harmon; Feng‐Yi Chin; Anna Gosiewska; Sanjay Mistry
Progressive photoreceptor degeneration resulting from genetic and other factors is a leading and largely untreatable cause of blindness worldwide. The object of this study was to find a cell type that is effective in slowing the progress of such degeneration in an animal model of human retinal disease, is safe, and could be generated in sufficient numbers for clinical application. We have compared efficacy of four human‐derived cell types in preserving photoreceptor integrity and visual functions after injection into the subretinal space of the Royal College of Surgeons rat early in the progress of degeneration. Umbilical tissue‐derived cells, placenta‐derived cells, and mesenchymal stem cells were studied; dermal fibroblasts served as cell controls. At various ages up to 100 days, electroretinogram responses, spatial acuity, and luminance threshold were measured. Both umbilical‐derived and mesenchymal cells significantly reduced the degree of functional deterioration in each test. The effect of placental cells was not much better than controls. Umbilical tissue‐derived cells gave large areas of photoreceptor rescue; mesenchymal stem cells gave only localized rescue. Fibroblasts gave sham levels of rescue. Donor cells were confined to the subretinal space. There was no evidence of cell differentiation into neurons, of tumor formation or other untoward pathology. Since the umbilical tissue‐derived cells demonstrated the best photoreceptor rescue and, unlike mesenchymal stem cells, were capable of sustained population doublings without karyotypic changes, it is proposed that they may provide utility as a cell source for the treatment of retinal degenerative diseases such as retinitis pigmentosa.
PLOS ONE | 2007
David M. Gamm; Shaomei Wang; Bin Lu; Sergei Girman; Toby Holmes; N. Bischoff; R. L. Shearer; Yves Sauve; Elizabeth E. Capowski; Clive N. Svendsen; Raymond D. Lund
Background A promising clinical application for stem and progenitor cell transplantation is in rescue therapy for degenerative diseases. This strategy seeks to preserve rather than restore host tissue function by taking advantage of unique properties often displayed by these versatile cells. In studies using different neurodegenerative disease models, transplanted human neural progenitor cells (hNPC) protected dying host neurons within both the brain and spinal cord. Based on these reports, we explored the potential of hNPC transplantation to rescue visual function in an animal model of retinal degeneration, the Royal College of Surgeons rat. Methodology/Principal Findings Animals received unilateral subretinal injections of hNPC or medium alone at an age preceding major photoreceptor loss. Principal outcomes were quantified using electroretinography, visual acuity measurements and luminance threshold recordings from the superior colliculus. At 90–100 days postnatal, a time point when untreated rats exhibit little or no retinal or visual function, hNPC-treated eyes retained substantial retinal electrical activity and visual field with near-normal visual acuity. Functional efficacy was further enhanced when hNPC were genetically engineered to secrete glial cell line-derived neurotrophic factor. Histological examination at 150 days postnatal showed hNPC had formed a nearly continuous pigmented layer between the neural retina and retinal pigment epithelium, as well as distributed within the inner retina. A concomitant preservation of host cone photoreceptors was also observed. Conclusions/Significance Wild type and genetically modified human neural progenitor cells survive for prolonged periods, migrate extensively, secrete growth factors and rescue visual functions following subretinal transplantation in the Royal College of Surgeons rat. These results underscore the potential therapeutic utility of hNPC in the treatment of retinal degenerative diseases and suggest potential mechanisms underlying their effect in vivo.
Investigative Ophthalmology & Visual Science | 2008
Shaomei Wang; S. Girman; Bin Lu; N. Bischoff; Toby Holmes; R. L. Shearer; Lynda S. Wright; Clive N. Svendsen; David M. Gamm; Raymond D. Lund
PURPOSE As a follow-up to previous studies showing that human cortical neural progenitor cells (hNPC(ctx)) can sustain vision for at least 70 days after injection into the subretinal space of Royal College of Surgeons (RCS) rats, the authors examined how functional rescue is preserved over long periods and how this relates to retinal integrity and donor cell survival. METHODS Pigmented dystrophic RCS rats (n = 15) received unilateral subretinal injections of hNPC(ctx) at postnatal day (P) 21; control rats (n = 10) received medium alone and were untreated. All animals were maintained on oral cyclosporine A. Function was monitored serially by measuring acuity (using an optomotor test) and luminance thresholds (recording from the superior colliculus) at approximately P90, P150, and P280. Eyes were processed for histologic study after functional tests. RESULTS Acuity and luminance thresholds were significantly better in hNPC(ctx)-treated animals than in controls (P < 0.001) at all time points studied. Acuity was greater than 90%, 82%, and 37% of normal at P90, P150, and P270, whereas luminance thresholds in the area of best rescue remained similar the whole time. Histologic studies revealed substantial photoreceptor rescue, even up to P280, despite progressive deterioration in rod and cone morphology. Donor cells were still present at P280, and no sign of donor cell overgrowth was seen. CONCLUSIONS Long-term rescue of function and associated morphologic substrates was seen, together with donor cell survival even in the xenograft paradigm. This is encouraging when exploring further the potential for the application of hNPC(ctx) in treating retinal disease.
Investigative Ophthalmology & Visual Science | 2008
Shaomei Wang; Bin Lu; S. Girman; Toby Holmes; Nicolas Bischoff; Raymond D. Lund
PURPOSE It is well documented that grafting of cells in the subretinal space of Royal College of Surgeons (RCS) rats limits deterioration of vision and loss of photoreceptors if performed early in postnatal life. What is unclear is whether cells introduced later, when photoreceptor degeneration is already advanced, can still be effective. This possibility was examined in the present study, using the human retinal pigment epithelial cell line, ARPE-19. METHODS Dystrophic RCS rats (postnatal day [P] 60) received subretinal injection of ARPE-19 cells (2 x 10(5)/3 microL/eye). Spatial frequency was measured by recording optomotor responses at P100 and P150, and luminance threshold responses were recorded from the superior colliculus at P150. Retinas were stained with cresyl violet, retinal cell-specific markers, and a human nuclear marker. Control animals were injected with medium alone. Animals comparably treated with grafts at P21 were available for comparison. All animals were treated with immunosuppression. RESULTS Later grafts preserved both spatial frequency and threshold responses over the control and delayed photoreceptor degeneration. There were two to three layers of rescued photoreceptors even at P150, compared with a scattered single layer in sham and untreated control retinas. Retinal cell marker staining showed an orderly array of the inner retinal lamination. The morphology of the second-order neurons was better preserved around the grafted area than in regions distant from graft. Sham injection had little effect in rescuing the photoreceptors. CONCLUSIONS RPE cell line transplants delivered later in the course of degeneration can preserve not only the photoreceptors and inner retinal lamination but also visual function in RCS rats. However, early intervention can achieve better rescue.
PLOS ONE | 2011
Kevin P. Kennelly; Deborah M. Wallace; Toby Holmes; Deborah J.R. Hankey; Tim Grant; Cliona O'Farrelly; David J Keegan
Purpose Graft failure remains an obstacle to experimental subretinal cell transplantation. A key step is preparing a viable graft, as high levels of necrosis and apoptosis increase the risk of graft failure. Retinal grafts are commonly harvested from cell cultures. We termed the graft preparation procedure “transplant conditions” (TC). We hypothesized that culture conditions influenced graft viability, and investigated whether viability decreased following TC using a mouse retinal pigment epithelial (RPE) cell line, DH01. Methods Cell viability was assessed by trypan blue exclusion. Levels of apoptosis and necrosis in vitro were determined by flow cytometry for annexin V and propidium iodide and Western blot analysis for the pro- and cleaved forms of caspases 3 and 7. Graft viability in vivo was established by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and cleaved caspase 3 immunolabeling of subretinal allografts. Results Pre-confluent cultures had significantly less nonviable cells than post-confluent cultures (6.6%±0.8% vs. 13.1%±0.9%, p<0.01). Cell viability in either group was not altered significantly following TC. Caspases 3 and 7 were not altered by levels of confluence or following TC. Pre-confluent cultures had low levels of apoptosis/necrosis (5.6%±1.1%) that did not increase following TC (4.8%±0.5%). However, culturing beyond confluence led to progressively increasing levels of apoptosis and necrosis (up to 16.5%±0.9%). Allografts prepared from post-confluent cultures had significantly more TUNEL-positive cells 3 hours post-operatively than grafts of pre-confluent cells (12.7%±3.1% vs. 4.5%±1.4%, p<0.001). Subretinal grafts of post-confluent cells also had significantly higher rates of cleaved caspase 3 than pre-confluent grafts (20.2%±4.3% vs. 7.8%±1.8%, p<0.001). Conclusion Pre-confluent cells should be used to maximize graft cell viability.
Cell Transplantation | 2017
Kevin P. Kennelly; Toby Holmes; Deborah M. Wallace; Cliona O'Farrelly; David J Keegan
Successful subretinal transplantation is limited by considerable early graft loss despite pharmacological suppression of adaptive immunity. We postulated that early innate immune activity is a dominant factor in determining graft survival and chose a nonimmunosuppressed mouse model of retinal pigment epithelial (RPE) cell transplantation to explore this. Expression of almost all measured cytokines by DH01 RPE cells increased significantly following graft preparation, and the neutrophil chemoattractant KC/GRO/CINC was most significantly increased. Subretinal allografts of DH01 cells (C57BL/10 origin) into healthy, non immunosuppressed C57BL/6 murine eyes were harvested and fixed at 1, 3, 7, and 28 days postoperatively and subsequently cryosectioned and stained. Graft cells were detected using SV40 large T antigen (SV40T) immunolabeling and apoptosis/necrosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Sections were also immunolabeled for macrophage (CD11b and F4/80), neutrophil (Gr1 Ly-6G), and T-lymphocyte (CD3-∊) infiltration. Images captured with an Olympus FV1000 confocal microscope were analyzed using the Imaris software. The proportion of the subretinal bolus comprising graft cells (SV40T+) was significantly (p < 0.001) reduced between postoperative day (POD) 3 (90 ± 4%) and POD 7 (20 ± 7%). CD11b+, F4/80+, and Gr1 Ly-6G+ cells increased significantly (p < 0.05) from POD 1 and predominated over SV40T+ cells by POD 7. Colabeling confocal microscopic analysis demonstrated graft engulfment by neutrophils and macrophages at POD 7, and reconstruction of z-stacked confocal images confirmed SV40T inside Gr1 Ly-6G+ cells. Expression of CD3-∊ was low and did not differ significantly between time points. By POD 28, no graft cells were detectable and few inflammatory cells remained. These studies reveal, for the first time, a critical role for innate immune mechanisms early in subretinal graft rejection. The future success of subretinal transplantation will require more emphasis on techniques to limit innate immune-mediated graft loss, rather than focusing exclusively on suppression of the adaptive immune response.
Cloning and Stem Cells | 2006
Raymond D. Lund; Shaomei Wang; Irina Klimanskaya; Toby Holmes; Rebeca Ramos-Kelsey; Bin Lu; Sergej V. Girman; N. Bischoff; Yves Sauvé; Robert Lanza
Investigative Ophthalmology & Visual Science | 2010
Toby Holmes; Kevin P. Kennelly; Deborah M. Wallace; David J Keegan
Investigative Ophthalmology & Visual Science | 2010
David J Keegan; Toby Holmes; Deborah M. Wallace; Kevin P. Kennelly
Investigative Ophthalmology & Visual Science | 2009
David J Keegan; Kevin P. Kennelly; Toby Holmes