Toby J. Wilkinson
Aberystwyth University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Toby J. Wilkinson.
PLOS ONE | 2014
Gabriel de la Fuente; Alejandro Belanche; Susan E. Girwood; Eric Pinloche; Toby J. Wilkinson; C. Jamie Newbold
The development of next generation sequencing has challenged the use of other molecular fingerprinting methods used to study microbial diversity. We analysed the bacterial diversity in the rumen of defaunated sheep following the introduction of different protozoal populations, using both next generation sequencing (NGS: Ion Torrent PGM) and terminal restriction fragment length polymorphism (T-RFLP). Although absolute number differed, there was a high correlation between NGS and T-RFLP in terms of richness and diversity with R values of 0.836 and 0.781 for richness and Shannon-Wiener index, respectively. Dendrograms for both datasets were also highly correlated (Mantel test = 0.742). Eighteen OTUs and ten genera were significantly impacted by the addition of rumen protozoa, with an increase in the relative abundance of Prevotella, Bacteroides and Ruminobacter, related to an increase in free ammonia levels in the rumen. Our findings suggest that classic fingerprinting methods are still valuable tools to study microbial diversity and structure in complex environments but that NGS techniques now provide cost effect alternatives that provide a far greater level of information on the individual members of the microbial population.
International Journal for Parasitology | 2011
Toby J. Wilkinson; Jenny Rock; N.M. Whiteley; Mykola Ovcharenko; Joseph E. Ironside
Microsporidia of the genus Dictyocoela are parasites of gammarid amphipod Crustacea. They typically exhibit low virulence and efficient vertical transmission and at least some strains are capable of feminising their hosts. Sequencing of a region of the 16S rDNA of Dictyocoela spp. from various gammarid host species and localities in Europe and northern Asia indicates that Dictyocoela is genetically diverse and that different strains predominate in different host species. However, the presence of intermediate sequences casts doubt upon previous attempts to describe Dictyocoela spp. on the basis of rDNA divergence alone. Phylogenetic analysis provides little support for coevolution between gammarids and Dictyocoela. Furthermore, observations of heavily infected individuals, together with genetic evidence of recombination, suggest that some strains of Dictyocoela may be horizontally transmitted and are sexually reproducing. These findings suggest that Dictyocoela may be phenotypically, as well as genotypically, diverse, with the potential to exhibit a range of different interactions with its host populations.
Journal of Proteome Research | 2012
Russell M. Morphew; Neil Eccleston; Toby J. Wilkinson; John McGarry; Samirah Perally; Mark C. Prescott; Deborah Ward; Diana J.L. Williams; Steve Paterson; M. Raman; Gopalakrishnan Ravikumar; M. Khalid Saifullah; S. M. Abbas Abidi; Paul McVeigh; Aaron G. Maule; Peter M. Brophy; E. James LaCourse
Fasciolosis is an important foodborne, zoonotic disease of livestock and humans, with global annual health and economic losses estimated at several billion US
Frontiers in Microbiology | 2016
Olga L. Mayorga; Alison H. Kingston-Smith; Eun Joong Kim; Gordon G. Allison; Toby J. Wilkinson; Matthew Hegarty; Michael K. Theodorou; C. J. Newbold; Sharon A. Huws
. Fasciola hepatica is the major species in temperate regions, while F. gigantica dominates in the tropics. In the absence of commercially available vaccines to control fasciolosis, increasing reports of resistance to current chemotherapeutic strategies and the spread of fasciolosis into new areas, new functional genomics approaches are being used to identify potential new drug targets and vaccine candidates. The glutathione transferase (GST) superfamily is both a candidate drug and vaccine target. This study reports the identification of a putatively novel Sigma class GST, present in a water-soluble cytosol extract from the tropical liver fluke F. gigantica. The GST was cloned and expressed as an enzymically active recombinant protein. This GST shares a greater identity with the human schistosomiasis GST vaccine currently at Phase II clinical trials than previously discovered F. gigantica GSTs, stimulating interest in its immuno-protective properties. In addition, in silico analysis of the GST superfamily of both F. gigantica and F. hepatica has revealed an additional Mu class GST, Omega class GSTs, and for the first time, a Zeta class member.
Journal of Eukaryotic Microbiology | 2008
Joseph E. Ironside; Toby J. Wilkinson; Jennifer Rock
Understanding the relationship between ingested plant material and the attached microbiome is essential for developing methodologies to improve ruminant nutrient use efficiency. We have previously shown that perennial ryegrass (PRG) rumen bacterial colonization events follow a primary (up to 4 h) and secondary (after 4 h) pattern based on the differences in diversity of the attached bacteria. In this study, we investigated temporal niche specialization of primary and secondary populations of attached rumen microbiota using metagenomic shotgun sequencing as well as monitoring changes in the plant chemistry using mid-infrared spectroscopy (FT-IR). Metagenomic Rapid Annotation using Subsystem Technology (MG-RAST) taxonomical analysis of shotgun metagenomic sequences showed that the genera Butyrivibrio, Clostridium, Eubacterium, Prevotella, and Selenomonas dominated the attached microbiome irrespective of time. MG-RAST also showed that Acidaminococcus, Bacillus, Butyrivibrio, and Prevotella rDNA increased in read abundance during secondary colonization, whilst Blautia decreased in read abundance. MG-RAST Clusters of Orthologous Groups (COG) functional analysis also showed that the primary function of the attached microbiome was categorized broadly within “metabolism;” predominantly amino acid, carbohydrate, and lipid metabolism and transport. Most sequence read abundances (51.6, 43.8, and 50.0% of COG families pertaining to amino acid, carbohydrate and lipid metabolism, respectively) within these categories were higher in abundance during secondary colonization. Kyoto encyclopedia of genes and genomes (KEGG) pathways analysis confirmed that the PRG-attached microbiota present at 1 and 4 h of rumen incubation possess a similar functional capacity, with only a few pathways being uniquely found in only one incubation time point only. FT-IR data for the plant residues also showed that the main changes in plant chemistry between primary and secondary colonization was due to increased carbohydrate, amino acid, and lipid metabolism. This study confirmed primary and secondary colonization events and supported the hypothesis that functional changes occurred as a consequence of taxonomical changes. Sequences within the carbohydrate metabolism COG families contained only 3.2% of cellulose activities, on average across both incubation times (1 and 4 h), suggesting that degradation of the plant cell walls may be a key rate-limiting factor in ensuring the bioavailability of intra-plant nutrients in a timely manner to the microbes and ultimately the animal. This suggests that a future focus for improving ruminant nutrient use efficiency should be altering the recalcitrant plant cell wall components and/or improving the cellulolytic capacity of the rumen microbiota.
Frontiers in Microbiology | 2017
Toby J. Wilkinson; A. A. Cowan; Hannah Vallin; L. A. Onime; Linda Boniface Oyama; Simon J. S. Cameron; Charlotte Gonot; J. M. Moorby; Kate Waddams; Vincent Theobald; David Leemans; S. Bowra; C. Nixey; Sharon A. Huws
ABSTRACT. Microsporidia of the genus Pleistophora are important parasites of fish and crustacea. Pleistophora mulleri has been described previously as a parasite of the gammarid amphipod crustacean Gammarus duebeni celticus in Irish freshwater habitats. Through a survey of European G. duebeni populations, P. mulleri was found to be widely distributed in the western British Isles (Wales, Scotland, and the Isle of Man), and populations of the subspecies Gammarus duebeni duebeni as well as G. d. celticus were infected. Pleistophora infections were also detected in G. d. duebeni sampled from the Bay of Gdansk on Polands Baltic coast, indicating a wide distribution of Pleistophora in European G. duebeni. Sequencing and phylogenetic analysis of the 16S rRNA, 18S rRNA, and Rpb1 genes of P. mulleri suggest that this species may be synonymous with P. typicalis, a parasite of fish. These findings suggest that amphipod crustaceans may act as intermediate or reservoir hosts for microsporidian parasites of fish.
Frontiers in Microbiology | 2018
Toby J. Wilkinson; Sharon A. Huws; Joan E. Edwards; Alison H. Kingston-Smith; Karen Siu-Ting; Martin Hughes; Francesco Rubino; Maximillian Friedersdorff; Christopher J. Creevey
The turkey microbiome is largely understudied, despite its relationship with bird health and growth, and the prevalence of human pathogens such as Campylobacter spp. In this study we investigated the microbiome within the small intestine (SI), caeca (C), large intestine (LI), and cloaca (CL) of turkeys at 6, 10, and 16 weeks of age. Eight turkeys were dissected within each age category and the contents of the SI, C, LI, and CL were harvested. 16S rDNA based QPCR was performed on all samples and samples for the four locations within three birds/age group were sequenced using ion torrent-based sequencing of the 16S rDNA. Sequencing data showed on a genus level, an abundance of Lactobacillus, Streptococcus, and Clostridium XI (38.2, 28.1, and 13.0% respectively) irrespective of location and age. The caeca exhibited the greatest microbiome diversity throughout the development of the turkey. PICRUSt data predicted an array of bacterial function, with most differences being apparent in the caeca of the turkeys as they matured. QPCR revealed that the caeca within 10 week old birds, contained the most Campylobacter spp. Understanding the microbial ecology of the turkey gastrointestinal tract is essential in terms of understanding production efficiency and in order to develop novel strategies for targeting Campylobacter spp.
bioRxiv | 2017
Linda Boniface Oyama; Susan E. Girdwood; Alan Cookson; Narcis Fernandez-Fuentes; Florence Privé; Hannah Vallin; Toby J. Wilkinson; Peter N. Golyshin; Olga V. Golyshina; Ralf Mikut; Kai Hilpert; Jennifer Richards; Mandy Wootton; Joan E. Edwards; Marc Maresca; Josette Perrier; Fionnuala Lundy; Yu Luo; Mei Zhou; Matthias Hess; Hilário Cuquetto Mantovani; Christopher J. Creevey; Sharon A. Huws
Metataxonomic 16S rDNA based studies are a commonplace and useful tool in the research of the microbiome, but they do not provide the full investigative power of metagenomics and metatranscriptomics for revealing the functional potential of microbial communities. However, the use of metagenomic and metatranscriptomic technologies is hindered by high costs and skills barrier necessary to generate and interpret the data. To address this, a tool for Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was developed for inferring the functional potential of an observed microbiome profile, based on 16S data. This allows functional inferences to be made from metataxonomic 16S rDNA studies with little extra work or cost, but its accuracy relies on the availability of completely sequenced genomes of representative organisms from the community being investigated. The rumen microbiome is an example of a community traditionally underrepresented in genome and sequence databases, but recent efforts by projects such as the Global Rumen Census and Hungate 1000 have resulted in a wide sampling of 16S rDNA profiles and almost 500 fully sequenced microbial genomes from this environment. Using this information, we have developed “CowPI,” a focused version of the PICRUSt tool provided for use by the wider scientific community in the study of the rumen microbiome. We evaluated the accuracy of CowPI and PICRUSt using two 16S datasets from the rumen microbiome: one generated from rDNA and the other from rRNA where corresponding metagenomic and metatranscriptomic data was also available. We show that the functional profiles predicted by CowPI better match estimates for both the meta-genomic and transcriptomic datasets than PICRUSt, and capture the higher degree of genetic variation and larger pangenomes of rumen organisms. Nonetheless, whilst being closer in terms of predictive power for the rumen microbiome, there were differences when compared to both the metagenomic and metatranscriptome data and so we recommend, where possible, functional inferences from 16S data should not replace metagenomic and metatranscriptomic approaches. The tool can be accessed at http://www.cowpi.org and is provided to the wider scientific community for use in the study of the rumen microbiome.
International Journal for Parasitology | 2017
Joseph E. Ironside; Toby J. Wilkinson
Antimicrobial peptides (AMPs) are promising drug candidates to target multi-drug resistant bacteria. The rumen microbiome presents an underexplored resource for the discovery of novel microbial enzymes and metabolites, including AMPs. Using functional screening and computational approaches, we identified 181 potentially novel AMPs from a rumen bacterial metagenome. Here, we show that three of the selected AMPs (Lynronne-1, Lynronne-2 and Lynronne-3) were effective against numerous bacterial pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). No decrease in MRSA susceptibility was observed after 25 days of sub-lethal exposure to these AMPs. The AMPs bound preferentially to bacterial membrane lipids and induced membrane permeability leading to cytoplasmic leakage. Topical administration of Lynronne-1 (10% w/v) to a mouse model of MRSA wound infection elicited a significant reduction in bacterial counts, which was comparable to treatment with 2% mupirocin ointment. Our findings indicate that the rumen microbiome may provide viable alternative antimicrobials for future therapeutic application.Antibiotics: Potential in the rumenAnti-microbial molecules made by microbes in the gut of ruminant animals could become new weapons against antibiotic-resistant infections. An international team of researchers led by Sharon Huws at Queen’s University Belfast, UK, identified three anti-microbial peptides in the rumen of animals such as cattle, sheep and goats. The peptides—short proteins—were highly active in laboratory trials against several clinically important drug-resistant infections. These included methicillin resistant Staphylococcus aureus (MRSA), a notorious cause of life-threatening infections, especially in patients with weakened immunity. There is growing interest in using peptides as alternatives to existing antibiotics. The findings, initiated by examining a ‘library’ of molecular data, suggest that the rumen is an under-explored resource that may harbor many medically useful antimicrobials. The possibilities should be investigated further, with promising molecules being tested in clinical conditions.
Journal of Proteome Research | 2016
Russell M. Morphew; Toby J. Wilkinson; Neil Mackintosh; Veronika Jahndel; Steve Paterson; Paul McVeigh; S. M. A. Abidi; Khalid Saifullah; M. Raman; Gopalakrishnan Ravikumar; James LaCourse; Aaron G. Maule; Peter M. Brophy
In the ancient Lake Baikal, Russia, amphipod crustaceans have undergone a spectacular adaptive radiation, resulting in a diverse community of species. A survey of microsporidian parasites inhabiting endemic and non-endemic amphipod host species at the margins of Lake Baikal indicates that the endemic amphipods harbour many microsporidian parasite groups associated with amphipods elsewhere in Eurasia. While these parasites may have undergone a degree of adaptive radiation within the lake, there is little evidence of host specificity. Furthermore, a lack of reciprocal monophyly indicates that exchanges of microsporidia between Baikalian and non-Baikalian hosts have occurred frequently in the past and may be ongoing. Conversely, limitations to parasite exchange between Baikalian and non-Baikalian host populations at the margins of the lake are implied by differences in parasite prevalence and lack of shared microsporidian haplotypes between the two host communities. While amphipod hosts have speciated sympatrically within Lake Baikal, the parasites appear instead to have accumulated, moving into the lake from external amphipod populations on multiple occasions to exploit the large and diverse community of endemic amphipods in Lake Baikal.