Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Todd B. Marder is active.

Publication


Featured researches published by Todd B. Marder.


Chemistry: A European Journal | 2009

The synthesis and one- and two-photon optical properties of dipolar, quadrupolar and octupolar donor–acceptor molecules containing dimesitylboryl groups

Jonathan C. Collings; Suk-Yue Poon; Céline Le Droumaguet; Marina Charlot; Claudine Katan; Lars-Olof Pålsson; Andrew Beeby; Jackie A. Mosely; Hanns Martin Kaiser; Dieter Kaufmann; Wai-Yeung Wong; Mireille Blanchard-Desce; Todd B. Marder

Two series of related donor-acceptor conjugated dipolar, pseudo-quadrupolar (V-shaped) and octupolar molecular systems based on the p-dimesitylborylphenylethynylaniline core, namely, 4-(4-dimesitylborylphenylethynyl)-N,N-dimethylaniline, 4-[4-(4-dimesitylborylphenylethynyl)phenylethynyl]-N,N-dimethylaniline, 3,6-bis(4-dimesitylborylphenylethynyl)-N-n-butylcarbazole and tris[4-(4-dimesitylborylphenylethynyl)phenyl]amine, and on the E-p-dimesitylborylethenylaniline motif, namely, E-4-dimesitylborylethenyl-N,N-di(4-tolyl)aniline, 3,6-bis(E-dimesitylborylethenyl)-N-n-butylcarbazole and tris(E-4-dimesitylborylethenylphenyl)amine have been synthesised by palladium-catalyzed cross-coupling and hydroboration routes, respectively. Their absorption and emission maxima, fluorescence lifetimes and quantum yields have been obtained and their two-photon absorption (TPA) spectra and TPA cross-sections have been examined. Of these systems, the octupolar compound tris(E-4-dimesitylborylethenylphenyl)amine has been shown to exhibit the largest TPA cross-section among the two series of approximately 1000 GM at 740 nm. Its TPA performance is comparable to those of other triphenylamine-based octupoles of similar size. The combination of such large TPA cross-sections and high emission quantum yields, up to 0.94, make these systems attractive for applications involving two-photon excited fluorescence (TPEF).


Angewandte Chemie | 2014

Highly Electron‐Deficient and Air‐Stable Conjugated Thienylboranes

Xiaodong Yin; Jiawei Chen; Roger A. Lalancette; Todd B. Marder; Frieder Jäkle

Introduced herein is a series of conjugated thienylboranes, which are inert to air and moisture, and even resist acids and strong bases. X-ray analyses reveal a coplanar arrangement of the thiophene rings, an arrangement which facilitates p-π conjugation through the boron atoms despite the presence of highly bulky 2,4,6-tri-tert-butylphenyl (Mes*) or 2,4,6-tris(trifluoromethyl)phenyl ((F)Mes) groups. Short B⋅⋅⋅F contacts, which lead to a pseudotrigonal bipyramidal geometry in the (F)Mes species, have been further studied by DFT and AIM analysis. In contrast to the Mes* groups, the highly electron-withdrawing (F) Mes groups do not diminish the Lewis acidity of boron toward F(-) anions. These compounds can be lithiated or iodinated under electrophilic conditions without decomposition, thus offering a promising route to larger conjugated structures with electron-acceptor character.


Chemistry: A European Journal | 2012

Experimental and Theoretical Studies on Organic D‐π‐A Systems Containing Three‐Coordinate Boron Moieties as both π‐Donor and π‐Acceptor

Lothar Weber; Daniel Eickhoff; Todd B. Marder; Mark A. Fox; Paul J. Low; Austin D. Dwyer; David J. Tozer; Stefanie Schwedler; Andreas Brockhinke; Hans-Georg Stammler; Beate Neumann

Four linear π-conjugated systems with 1,3-diethyl-1,3,2-benzodiazaborolyl [C(6)H(4)(NEt)(2)B] as a π-donor at one end and dimesitylboryl (BMes(2)) as a π-acceptor at the other end were synthesized. These unusual push-pull systems contain phenylene (-1,4-C(6)H(4)-; 1), biphenylene (-4,4-(1,1-C(6)H(4))(2)-; 2), thiophene (-2,5-C(4)H(2)S-; 3), and dithiophene (-5,5-(2,2-C(4)H(2)S)(2)-; 4) as π-conjugated bridges and different types of three-coordinate boron moieties serving as both π-donor and π-acceptor. Molecular structures of 2, 3, and 4 were determined by single-crystal X-ray diffraction. Photophysical studies on these systems reveal blue-green fluorescence in all compounds. The Stokes shifts for 1, 2, and 3 are notably large at 7820-9760 cm(-1) in THF and 5430-6210 cm(-1) in cyclohexane, whereas the Stokes shift for 4 is significantly smaller at 5510 cm(-1) in THF and 2450 cm(-1) in cyclohexane. Calculations on model systems 1-4 show the HOMO to be mainly diazaborolyl in character and the LUMO to be dominated by the empty p orbital at the boron atom of the BMes(2) group. However, there are considerable dithiophene bridge contributions to both orbitals in 4. From the experimental data and MO calculations, the π-electron-donating strength of the 1,3-diethyl-1,3,2-benzodiazaborolyl group was found to lie between that of methoxy and dimethylamino groups. TD-DFT calculations on 1-4, using B3LYP and CAM-B3LYP functionals, provide insight into the absorption and emission processes. B3LYP predicts that both the absorption and emission processes have strong charge-transfer character. CAM-B3LYP which, unlike B3LYP, contains the physics necessary to describe charge-transfer excitations, predicts only a limited amount of charge transfer upon absorption, but somewhat more upon emission. The excited-state (S(1)) geometries show the borolyl group to be significantly altered compared to the ground-state (S(0)) geometries. This borolyl group reorganization in the excited state is believed to be responsible for the large Stokes shifts in organic systems containing benzodiazaborolyl groups in these and related compounds.


Chemistry: A European Journal | 2014

Experimental and Theoretical Studies of Quadrupolar Oligothiophene-Cored Chromophores Containing Dimesitylboryl Moieties as π-Accepting End-Groups: Syntheses, Structures, Fluorescence, and One- and Two-Photon Absorption

Lei Ji; Robert M. Edkins; Laura J. Sewell; Andrew Beeby; Andrei S. Batsanov; Katharina Fucke; Martin Drafz; Judith A. K. Howard; Odile Moutounet; Fatima Ibersiene; Abdou Boucekkine; Eric Furet; Zhiqiang Liu; Jean-François Halet; Claudine Katan; Todd B. Marder

Quadrupolar oligothiophene chromophores composed of four to five thiophene rings with two terminal (E)-dimesitylborylvinyl groups (4 V-5 V), and five thiophene rings with two terminal aryldimesitylboryl groups (5 B), as well as an analogue of 5 V with a central EDOT ring (5 VE), have been synthesized via Pd-catalyzed cross-coupling reactions in high yields (66-89%). Crystal structures of 4 V, 5 B, bithiophene 2 V, and five thiophene-derived intermediates are reported. Chromophores 4 V, 5 V, 5 B and 5 VE have photoluminescence quantum yields of 0.26-0.29, which are higher than those of the shorter analogues 1 V-3 V (0.01-0.20), and short fluorescence lifetimes (0.50-1.05 ns). Two-photon absorption (TPA) spectra have been measured for 2 V-5 V, 5 B and 5 VE in the range 750-920 nm. The measured TPA cross-sections for the series 2 V-5 V increase steadily with length up to a maximum of 1930 GM. We compare the TPA properties of 2 V-5 V with the related compounds 5 B and 5 VE, giving insight into the structure-property relationship for this class of chromophore. DFT and TD-DFT results, including calculated TPA spectra, complement the experimental findings and contribute to their interpretation. A comparison to other related thiophene and dimesitylboryl compounds indicates that our design strategy is promising for the synthesis of efficient dyes for two-photon-excited fluorescence applications.


New Journal of Chemistry | 2007

Synthesis, photophysics and molecular structures of luminescent 2,5-bis(phenylethynyl)thiophenes (BPETs)

Jamie S. Siddle; Richard M. Ward; Jonathan C. Collings; Simon R. Rutter; Laurent Porrès; Lucas Applegarth; Andrew Beeby; Andrei S. Batsanov; Amber L. Thompson; Judith A. K. Howard; Abdou Boucekkine; Karine Costuas; Jean-François Halet; Todd B. Marder

The Sonogashira cross-coupling of two equivalents of para-substituted ethynylbenzenes with 2,5-diiodothiophene provides a simple synthetic route for the preparation of 2,5-bis(para-R-phenylethynyl)thiophenes (R = H, Me, OMe, CF3, NMe2, NO2, CN and CO2Me) (1a–h). Likewise, 2,5-bis(pentafluorophenylethynyl)thiophene (2) was prepared by the coupling of 2,5-diiodothiophene with pentafluorophenylacetylene. All compounds were characterised by NMR, IR, Raman and mass spectroscopy, elemental analysis, and their absorption and emission spectra, quantum yields and lifetimes were also measured. The spectroscopic studies of 1a–h and 2 show that both electron donating and electron withdrawing para-subsituents on the phenyl rings shift the absorption and emission maxima to lower energies, but that acceptors are more efficient in this regard. The short singlet lifetimes and modest fluorescence quantum yields (ca. 0.2–0.3) observed are characteristic of rapid intersystem crossing. The single-crystal structures of 2,5-bis(phenylethynyl)thiophene, 2,5-bis(para-carbomethoxyphenylethynyl)thiophene, 2,5-bis(para-methylphenylethynyl)thiophene and 2,5-bis(pentafluorophenylethynyl)thiophene were determined by X-ray diffraction at 120 K. DFT calculations show that the all-planar form of the compounds is the lowest in energy, although rotation of the phenyl groups about the CC bond is facile and TD-DFT calculations suggest that, similar to 1,4-bis(phenylethynyl)benzene analogues, the absorption spectra in solution arise from a variety of rotational conformations. Frequency calculations confirm the assignments of the compounds’ IR and Raman spectra.


Liquid Crystals | 2008

The synthesis and liquid crystalline behaviour of alkoxy‐substituted derivatives of 1,4‐bis(phenylethynyl)benzene

Donocadh P. Lydon; David Albesa-Jové; Gemma C. Shearman; John M. Seddon; Judith A. K. Howard; Todd B. Marder; Paul J. Low

Despite the prevalence of organised 1,4‐bis(phenylethynyl)benzene derivatives in molecular electronics, the interest in the photophysics of these systems and the common occurrence of phenylethynyl moeties in molecules that exhibit liquid crystalline phases, the phase behaviour of simple alkoxy‐substituted 1,4‐bis(phenylethynyl)benzene derivatives has not yet been described. Two series of 1,4‐bis(phenylethynyl)benzene derivatives, i.e. 1‐[(4′‐alkoxy)phenylethynyl]‐4‐(phenylethynyl)benzenes (5a–5f) and methyl 4‐[(4″‐alkoxy)phenylethynyl‐4′‐(phenylethynyl)] benzoates (18a–18f) [alkoxy = n‐C4H9 (a), n‐C6H13 (b), n‐C9H19 (c), n‐C12H25 (d), n‐C14H29 (e), n‐C16H33 (f)] have been prepared and characterised. Both series have good chemical stability at temperatures up to 210°C, the derivatives featuring the methyl ester head‐group (18a–18f) offering rather higher melting points and generally stabilising a more diverse range of mesophases at higher temperatures than those found for the simpler compounds (5a–5f). Smectic phases are stabilised by the longer alkoxy substituents, whereas for short and intermediate chain lengths of the simpler system (5a–5c) nematic phases dominate. Diffraction analysis was used to identify the SmBhex phase in (5d–5f) that is stable within a temperature range of approximately 120–140°C. The relationships between the organisation of molecules within these moderate temperature liquid crystalline phases and other self‐organised states (e.g. Langmuir‐Blodgett films) remain to be explored.


Chemistry: A European Journal | 2017

Pyrene Molecular Orbital Shuffle—Controlling Excited State and Redox Properties by Changing the Nature of the Frontier Orbitals

Julia Merz; Julian Fink; Alexandra Friedrich; Ivo Krummenacher; Hamad H. Al Mamari; Sabine Lorenzen; Martin Haehnel; Antonius Eichhorn; Michael Moos; Marco Holzapfel; Holger Braunschweig; Christoph Lambert; Andreas Steffen; Lei Ji; Todd B. Marder

We show that by judicious choice of substituents at the 2- and 7-positions of pyrene, the frontier orbital order of pyrene can be modified, giving enhanced control over the nature and properties of the photoexcited states and the redox potentials. Specifically, we introduced a julolidine-like moiety and Bmes2 (mes=2,4,6-Me3 C6 H2 ) as very strong donor (D) and acceptor (A), respectively, giving 2,7-D-π-D- and unsymmetric 2,7-D-π-A-pyrene derivatives, in which the donor destabilizes the HOMO-1 and the acceptor stabilizes the LUMO+1 of the pyrene core. Consequently, for 2,7-substituted pyrene derivatives, unusual properties are obtained. For example, very large bathochromic shifts were observed for all of our compounds, and unprecedented green light emission occurs for the D/D system. In addition, very high radiative rate constants in solution and in the solid state were recorded for the D-π-D- and D-π-A-substituted compounds. All compounds show reversible one-electron oxidations, and Jul2 Pyr exhibits a second oxidation, with the largest potential splitting (ΔE=440u2005mV) thus far reported for 2,7-substituted pyrenes. Spectroelectrochemical measurements confirm an unexpectedly strong coupling between the 2,7-substituents in our pyrene derivatives.


Advanced Functional Materials | 2008

Manipulating Charge-Transfer Character with Electron-Withdrawing Main-Group Moieties for the Color Tuning of Iridium Electrophosphors†

Guijiang Zhou; Cheuk-Lam Ho; Wai-Yeting Wong; Qi Wang; Dongge Ma; Lixiang Wang; Zhenyang Lin; Todd B. Marder; Andrew Beeby


Chemical Science | 2015

Optical and electronic properties of air-stable organoboron compounds with strongly electron-accepting bis(fluoromesityl)boryl groups

Zuolun Zhang; Robert M. Edkins; Joern Nitsch; Katharina Fucke; Andreas Steffen; Lauren E. Longobardi; Douglas W. Stephan; Christoph Lambert; Todd B. Marder


Journal of The Chemical Society-dalton Transactions | 2009

Synthetic, structural, photophysical and computational studies on 2-arylethynyl-1,3,2-diazaboroles

Lothar Weber; Vanessa Werner; Mark A. Fox; Todd B. Marder; Stefanie Schwedler; Andreas Brockhinke; Hans-Georg Stammler; Beate Neumann

Collaboration


Dive into the Todd B. Marder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge