Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Todd B. Sherer is active.

Publication


Featured researches published by Todd B. Sherer.


Nature Neuroscience | 2000

Chronic systemic pesticide exposure reproduces features of Parkinson's disease

Ranjita Betarbet; Todd B. Sherer; Gillian MacKenzie; Monica Garcia-Osuna; Alexander Panov; J. Timothy Greenamyre

The cause of Parkinsons disease (PD) is unknown, but epidemiological studies suggest an association with pesticides and other environmental toxins, and biochemical studies implicate a systemic defect in mitochondrial complex I. We report that chronic, systemic inhibition of complex I by the lipophilic pesticide, rotenone, causes highly selective nigrostriatal dopaminergic degeneration that is associated behaviorally with hypokinesia and rigidity. Nigral neurons in rotenone-treated rats accumulate fibrillar cytoplasmic inclusions that contain ubiquitin and α-synuclein. These results indicate that chronic exposure to a common pesticide can reproduce the anatomical, neurochemical, behavioral and neuropathological features of PD.


The Journal of Neuroscience | 2003

Mechanism of Toxicity in Rotenone Models of Parkinson's Disease

Todd B. Sherer; Ranjita Betarbet; Claudia M. Testa; Byoung Boo Seo; Jason R. Richardson; Jin-Ho Kim; Gary W. Miller; Takao Yagi; Akemi Matsuno-Yagi; J. Timothy Greenamyre

Exposure of rats to the pesticide and complex I inhibitor rotenone reproduces features of Parkinsons disease, including selective nigrostriatal dopaminergic degeneration and α-synuclein-positive cytoplasmic inclusions (Betarbet et al., 2000; Sherer et al., 2003). Here, we examined mechanisms of rotenone toxicity using three model systems. In SK-N-MC human neuroblastoma cells, rotenone (10 nm to 1 μm) caused dose-dependent ATP depletion, oxidative damage, and death. To determine the molecular site of action of rotenone, cells were transfected with the rotenone-insensitive single-subunit NADH dehydrogenase of Saccharomyces cerevisiae (NDI1), which incorporates into the mammalian ETC and acts as a “replacement” for endogenous complex I. In response to rotenone, NDI1-transfected cells did not show mitochondrial impairment, oxidative damage, or death, demonstrating that these effects of rotenone were caused by specific interactions at complex I. Although rotenone caused modest ATP depletion, equivalent ATP loss induced by 2-deoxyglucose was without toxicity, arguing that bioenergetic defects were not responsible for cell death. In contrast, reducing oxidative damage with antioxidants, or by NDI1 transfection, blocked cell death. To determine the relevance of rotenone-induced oxidative damage to dopaminergic neuronal death, we used a chronic midbrain slice culture model. In this system, rotenone caused oxidative damage and dopaminergic neuronal loss, effects blocked by α-tocopherol. Finally, brains from rotenone-treated animals demonstrated oxidative damage, most notably in midbrain and olfactory bulb, dopaminergic regions affected by Parkinsons disease. These results, using three models of increasing complexity, demonstrate the involvement of oxidative damage in rotenone toxicity and support the evaluation of antioxidant therapies for Parkinsons disease.


Experimental Neurology | 2003

Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and α-synuclein aggregation

Todd B. Sherer; Jin-Ho Kim; Ranjita Betarbet; J. Timothy Greenamyre

Previous studies demonstrated that chronic systemic exposure to the pesticide and mitochondrial toxin rotenone through jugular vein cannulation reproduced many features of Parkinsons disease (PD) in rats, including nigrostriatal dopaminergic degeneration and formation of alpha-synuclein-positive cytoplasmic inclusions in nigral neurons (R. Betarbet et al., 2000, Nat. Neurosci. 3, 1301-1306). Although novel and conceptually important, the rotenone model of PD suffered from being extremely labor-intensive. The current paper demonstrates that these same features of PD can be reproduced by chronic, systemic exposure to rotenone following implantation of subcutaneous osmotic pumps. Chronic subcutaneous exposure to low doses of rotenone (2.0-3.0 mg/kg/day) caused highly selective nigrostriatal dopaminergic lesions. Striatal neurons containing DARPP-32 (dopamine and cAMP-regulated phosphoprotein) remained intact with normal morphology, and NeuN staining revealed normal neuronal nuclear morphology. Neurons of the globus pallidus and subthalamic nucleus were spared. Subcutaneous rotenone exposure caused alpha-synuclein-positive cytoplasmic aggregates in nigral neurons. This new protocol for chronic rotenone administration is a substantial improvement in terms of simplicity and throughput.


Iubmb Life | 2001

Complex I and Parkinson's Disease

J. Timothy Greenamyre; Todd B. Sherer; Ranjita Betarbet; Alexander Panov

Complex I of the mammalian electron transfer chain is composed of at least 43 protein subunits, of which 7 are encoded by mtDNA. It catalyzes the transfer of electrons from NADH to ubiquinone and translocates protons from the mitochondrial matrix to the intermembrane space. It may also play direct roles in the mitochondrial permeability transition and in cell death pathways. Despite the limitations of current complex I assays, biochemical studies have suggested the presence of a mild, systemic defect of complex I in Parkinsons disease (PD). Recent experimental work has modeled this abnormality using rotenone to systemically inhibit complex I. Chronic rotenone exposure accurately recapitulated the pathological, biochemical, and behavioral features of PD. Thus, relatively subtle complex I abnormalities‐‐either genetic or acquired‐‐may be central to the pathogenesis of PD.


Neuroscience Letters | 2003

Selective microglial activation in the rat rotenone model of Parkinson's disease

Todd B. Sherer; Ranjita Betarbet; Jin-Ho Kim; J. Timothy Greenamyre

Chronic rotenone exposure reproduces features of Parkinsons disease (PD) (Nat. Neurosci. 3 (2000) 1301; Exp. Neurol. 179 (2003) 9). We investigated the role of glial activation in rotenone toxicity in vivo. Male Lewis rats received 2-3 mg/kg rotenone per day for up to 4 weeks. In 50% of surviving rotenone-treated animals, there was nigrostriatal dopaminergic degeneration, marked by reduced tyrosine hydroxylase immunoreactivity). Extensive microglial activation, determined by OX-42-ir, occurred in striatum and nigra of rotenone-treated animals, and was prominent before anatomical evidence of dopaminergic lesions. Microglia enlarged and developed short, stubby processes in rotenone-treated animals. Rotenone-induced microglial activation was less pronounced in cortex. Reactive astrocytosis was minimal and limited to a thin rim around the lesion. Marked microglial activation with minimal astrocytosis is another pathological feature of PD reproduced by rotenone treatment.


Journal of Biological Chemistry | 2005

Rotenone Model of Parkinson Disease MULTIPLE BRAIN MITOCHONDRIA DYSFUNCTIONS AFTER SHORT TERM SYSTEMIC ROTENONE INTOXICATION

Alexander Panov; Sergey Dikalov; Natalia Shalbuyeva; Georgia Taylor; Todd B. Sherer; J. Timothy Greenamyre

Chronic infusion of rotenone (Rot) to Lewis rats reproduces many features of Parkinson disease. Rot (3 mg/kg/day) was infused subcutaneously to male Lewis rats for 6 days using Alzet minipumps. Control rats received the vehicle only. Presence of 0.1% bovine serum albumin during the isolation procedure completely removed rotenone bound to the mitochondria. Therefore all functional changes observed were aftereffects of rotenone toxicity in vivo. In Rot rat brain mitochondria (Rot-RBM) there was a 30-40% inhibition of respiration in State 3 and State 3U with Complex I (Co-I) substrates and succinate. Rot did not affect the State 4Δψ of RBM and rat liver mitochondria (RLM). However, Rot-RBM required two times less Ca2+ to initiate permeability transition (mPT). There was a 2-fold increase in \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{O}_{2}^{{\bar{{\cdot}}}}\) \end{document} or H2O2 generation in Rot-RBM oxidizing glutamate. Rot infusion affected RLM little. Our results show that in RBM, the major site of reactive oxygen species generation with glutamate or succinate is Co-I. We also found that Co-II generates substantial amounts of reactive oxygen species that increased 2-fold in the Rot-RBM. Our data suggest that the primary mechanism of the Rot toxic effect on RBM consists in a significant increase of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{O}_{2}^{{\bar{{\cdot}}}}\) \end{document} generation that causes damage to Co-I and Co-II, presumably at the level of 4Fe-4S clusters. Decreased respiratory activity diminishes resistance of RBM to Ca2+ and thus increases probability of mPT and apoptotic cell death. We suggest that the damage to Co-I and Co-II shifts \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{O}_{2}^{{\bar{{\cdot}}}}\) \end{document} generation from the CoQ10 sites to more proximal sites, such as flavines, and makes it independent of the RBM functional state.


Journal of Neurochemistry | 2007

Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson’s disease

Todd B. Sherer; Jason R. Richardson; Claudia M. Testa; Byoung Boo Seo; Alexander Panov; Takao Yagi; Akemi Matsuno-Yagi; Gary W. Miller; J. Timothy Greenamyre

Parkinson’s disease (PD) has been linked to mitochondrial dysfunction and pesticide exposure. The pesticide rotenone (ROT) inhibits complex I and reproduces features of PD in animal models, suggesting that environmental agents that inhibit complex I may contribute to PD. We have previously demonstrated that ROT toxicity is dependent upon complex I inhibition and that oxidative stress is the primary mechanism of toxicity. In this study, we examined the in vitro toxicity and mechanism of action of several putative complex I inhibitors that are commonly used as pesticides. The rank order of toxicity of pesticides to neuroblastoma cells was pyridaben > rotenone > fenpyroximate > fenazaquin > tebunfenpyrad. A similar order of potency was observed for reduction of ATP levels and competition for 3H‐dihydrorotenone (DHR) binding to complex I, with the exception of pyridaben (PYR). Neuroblastoma cells stably expressing the ROT‐insensitive NADH dehydrogenase of Saccharomyces cerevisiae (NDI1) were resistant to these pesticides, demonstrating the requirement of complex I inhibition for toxicity. We further found that PYR was a more potent inhibitor of mitochondrial respiration and caused more oxidative damage than ROT. The oxidative damage could be attenuated by NDI1 or by the antioxidants α‐tocopherol and coenzyme Q10. PYR was also highly toxic to midbrain organotypic slices. These data demonstrate that, in addition to ROT, several commercially used pesticides directly inhibit complex I, cause oxidative damage, and suggest that further study is warranted into environmental agents that inhibit complex I for their potential role in PD.


Experimental Neurology | 2005

Ubiquitin–proteasome system and Parkinson's diseases

Ranjita Betarbet; Todd B. Sherer; J. Timothy Greenamyre

Parkinsons disease (PD) is a progressive neurodegenerative disorder characterized by nigrostriatal dopaminergic degeneration and development of cytoplasmic inclusions known as Lewy bodies. To date, the mechanisms involved in PD pathogenesis are not clearly understood. Clues from genetic studies including identification of mutations in genes for alpha-synuclein, parkin, and ubiquitin carboxy hydrolase L1 associated with familial PD and the presence of proteinaceous cytoplasmic inclusions in spared dopaminergic nigral neurons in sporadic cases of PD have suggested an important role for ubiquitin-proteasome system (UPS) and aberrant protein degradation. In vivo and in vitro studies have linked parkin, alpha-synuclein, and oxidative stress to a compromised UPS and PD pathogenesis suggesting novel therapeutic targets.


The Neuroscientist | 2002

Environment, Mitochondria, and Parkinson's Disease

Todd B. Sherer; Ranjita Betarbet; J. Timothy Greenamyre

Parkinsons disease (PD) is a common and disabling neurodegenerative disease marked by progressive motor dysfunction, which results from selective degeneration of the nigrostriatal pathway. Epidemiological studies indicate that exposure to pesticides, rural living, farming, and drinking well water are associated with an increased risk of developing PD. Rare cases of PD are caused by mutations in nuclear genes, and there is increasing evidence for susceptibility genes that alter disease risk. Parkinsons disease is also associated with a systemic defect in mitochondrial complex I activity. Animal models indicate that exposure to inhibitors of mitochondrial complex I, including pesticides, is sufficient to reproduce the features of PD, but genetic factors clearly modulate susceptibility. Complex I defects may result in oxidative stress and increase the susceptibility of neurons to excitotoxic death. In this way, environmental exposures and mitochondrial dysfunction may interact and result in neurodegeneration.


Parkinsonism & Related Disorders | 2003

The rotenone model of Parkinson's disease: genes, environment and mitochondria

J. Timothy Greenamyre; Ranjita Betarbet; Todd B. Sherer

Parkinsons disease (PD) is occasionally caused by single gene mutations or by single toxic exposures, but most cases of PD are probably caused by some combination of genetic susceptibility and environmental exposure. Using rotenone as a prototype for an environmental toxicant, we argue here that genetic and environmental causes of PD converge on common pathogenic mechanisms. If so, protective strategies devised for one type of PD may be broadly useful for other forms of the disease.

Collaboration


Dive into the Todd B. Sherer's collaboration.

Top Co-Authors

Avatar

J. Timothy Greenamyre

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Byoung Boo Seo

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason R. Richardson

Northeast Ohio Medical University

View shared research outputs
Top Co-Authors

Avatar

Takao Yagi

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudia M. Testa

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge