Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Todd C. Atwood is active.

Publication


Featured researches published by Todd C. Atwood.


Ecological Applications | 2015

Polar bear population dynamics in the southern Beaufort Sea during a period of sea ice decline

Jeffrey F. Bromaghin; Trent L. McDonald; Ian Stirling; Andrew E. Derocher; Evan Richardson; Eric V. Regehr; David C. Douglas; George M. Durner; Todd C. Atwood; Steven C. Amstrup

In the southern Beaufort Sea of the United States and Canada, prior investigations have linked declines in summer sea ice to reduced physical condition, growth, and survival of polar bears (Ursus maritimus). Combined with projections of population decline due to continued climate warming and the ensuing loss of sea ice habitat, those findings contributed to the 2008 decision to list the species as threatened under the U.S. Endangered Species Act. Here, we used mark-recapture models to investigate the population dynamics of polar bears in the southern Beaufort Sea from 2001 to 2010, years during which the spatial and temporal extent of summer sea ice generally declined. Low survival from 2004 through 2006 led to a 25-50% decline in abundance. We hypothesize that low survival during this period resulted from (1) unfavorable ice conditions that limited access to prey during multiple seasons; and possibly, (2) low prey abundance. For reasons that are not clear, survival of adults and cubs began to improve in 2007 and abundance was comparatively stable from 2008 to 2010, with ~900 bears in 2010 (90% CI 606-1212). However, survival of subadult bears declined throughout the entire period. Reduced spatial and temporal availability of sea ice is expected to increasingly force population dynamics of polar bears as the climate continues to warm. However, in the short term, our findings suggest that factors other than sea ice can influence survival. A refined understanding of the ecological mechanisms underlying polar bear population dynamics is necessary to improve projections of their future status and facilitate development of management strategies.


PLOS ONE | 2016

Rapid Environmental Change Drives Increased Land Use by an Arctic Marine Predator.

Todd C. Atwood; Elizabeth Peacock; Melissa A. McKinney; Kate M. Lillie; Ryan R. Wilson; David C. Douglas; Susanne Miller; Pat Terletzky

In the Arctic Ocean’s southern Beaufort Sea (SB), the length of the sea ice melt season (i.e., period between the onset of sea ice break-up in summer and freeze-up in fall) has increased substantially since the late 1990s. Historically, polar bears (Ursus maritimus) of the SB have mostly remained on the sea ice year-round (except for those that came ashore to den), but recent changes in the extent and phenology of sea ice habitat have coincided with evidence that use of terrestrial habitat is increasing. We characterized the spatial behavior of polar bears spending summer and fall on land along Alaska’s north coast to better understand the nexus between rapid environmental change and increased use of terrestrial habitat. We found that the percentage of radiocollared adult females from the SB subpopulation coming ashore has tripled over 15 years. Moreover, we detected trends of earlier arrival on shore, increased length of stay, and later departure back to sea ice, all of which were related to declines in the availability of sea ice habitat over the continental shelf and changes to sea ice phenology. Since the late 1990s, the mean duration of the open-water season in the SB increased by 36 days, and the mean length of stay on shore increased by 31 days. While on shore, the distribution of polar bears was influenced by the availability of scavenge subsidies in the form of subsistence-harvested bowhead whale (Balaena mysticetus) remains aggregated at sites along the coast. The declining spatio-temporal availability of sea ice habitat and increased availability of human-provisioned resources are likely to result in increased use of land. Increased residency on land is cause for concern given that, while there, bears may be exposed to a greater array of risk factors including those associated with increased human activities.


Biology Letters | 2016

Conservation status of polar bears (Ursus maritimus) in relation to projected sea-ice declines.

Eric V. Regehr; Kristin L. Laidre; H. Resit Akçakaya; Steven C. Amstrup; Todd C. Atwood; Nicholas J. Lunn; Martyn E. Obbard; Harry L. Stern; Gregory W. Thiemann; Øystein Wiig

Loss of Arctic sea ice owing to climate change is the primary threat to polar bears throughout their range. We evaluated the potential response of polar bears to sea-ice declines by (i) calculating generation length (GL) for the species, which determines the timeframe for conservation assessments; (ii) developing a standardized sea-ice metric representing important habitat; and (iii) using statistical models and computer simulation to project changes in the global population under three approaches relating polar bear abundance to sea ice. Mean GL was 11.5 years. Ice-covered days declined in all subpopulation areas during 1979–2014 (median −1.26 days year−1). The estimated probabilities that reductions in the mean global population size of polar bears will be greater than 30%, 50% and 80% over three generations (35–41 years) were 0.71 (range 0.20–0.95), 0.07 (range 0–0.35) and less than 0.01 (range 0–0.02), respectively. According to IUCN Red List reduction thresholds, which provide a common measure of extinction risk across taxa, these results are consistent with listing the species as vulnerable. Our findings support the potential for large declines in polar bear numbers owing to sea-ice loss, and highlight near-term uncertainty in statistical projections as well as the sensitivity of projections to different plausible assumptions.


Ecology and Evolution | 2014

Validation of adipose lipid content as a body condition index for polar bears.

Melissa A. McKinney; Todd C. Atwood; Rune Dietz; Christian Sonne; Sara J. Iverson; Elizabeth Peacock

Body condition is a key indicator of individual and population health. Yet, there is little consensus as to the most appropriate condition index (CI), and most of the currently used CIs have not been thoroughly validated and are logistically challenging. Adipose samples from large datasets of capture biopsied, remote biopsied, and harvested polar bears were used to validate adipose lipid content as a CI via tests of accuracy, precision, sensitivity, biopsy depth, and storage conditions and comparisons to established CIs, to measures of health and to demographic and ecological parameters. The lipid content analyses of even very small biopsy samples were highly accurate and precise, but results were influenced by tissue depth at which the sample was taken. Lipid content of capture biopsies and samples from harvested adult females was correlated with established CIs and/or conformed to expected biological variation and ecological changes. However, lipid content of remote biopsies was lower than capture biopsies and harvested samples, possibly due to lipid loss during dart retrieval. Lipid content CI is a biologically relevant, relatively inexpensive and rapidly assessed CI and can be determined routinely for individuals and populations in order to infer large-scale spatial and long-term temporal trends. As it is possible to collect samples during routine harvesting or remotely using biopsy darts, monitoring and assessment of body condition can be accomplished without capture and handling procedures or noninvasively, which are methods that are preferred by local communities. However, further work is needed to apply the method to remote biopsies.


Wildlife Research | 2014

Effects of capturing and collaring on polar bears: findings from long-term research on the southern Beaufort Sea population

Karyn D. Rode; Anthony M. Pagano; Jeffrey F. Bromaghin; Todd C. Atwood; George M. Durner; Kristin S. Simac; Steven C. Amstrup

Abstract Context. The potential for research methods to affect wildlife is an increasing concern among both scientists and the public. This topic has a particular urgency for polar bears because additional research is needed to monitor and understand population responses to rapid loss of sea ice habitat. Aims. This study used data collected from polar bears sampled in the Alaska portion of the southern Beaufort Sea to investigate the potential for capture to adversely affect behaviour and vital rates. We evaluated the extent to which capture, collaring and handling may influence activity and movement days to weeks post-capture, and body mass, body condition, reproduction and survival over 6 months or more. Methods. We compared post-capture activity and movement rates, and relationships between prior capture history and body mass, body condition and reproductive success. We also summarised data on capture-related mortality. Key results. Individual-based estimates of activity and movement rates reached near-normal levels within 2–3 days and fully normal levels within 5 days post-capture. Models of activity and movement rates among all bears had poor fit, but suggested potential for prolonged, lower-level rate reductions. Repeated captures was not related to negative effects on body condition, reproduction or cub growth or survival. Capture-related mortality was substantially reduced after 1986, when immobilisation drugs were changed, with only 3 mortalities in 2517 captures from 1987–2013. Conclusions. Polar bears in the southern Beaufort Sea exhibited the greatest reductions in activity and movement rates 3.5 days post-capture. These shorter-term, post-capture effects do not appear to have translated into any long-term effects on body condition, reproduction, or cub survival. Additionally, collaring had no effect on polar bear recovery rates, body condition, reproduction or cub survival. Implications. This study provides empirical evidence that current capture-based research methods do not have long-term implications, and are not contributing to observed changes in body condition, reproduction or survival in the southern Beaufort Sea. Continued refinement of capture protocols, such as the use of low-impact dart rifles and reversible drug combinations, might improve polar bear response to capture and abate short-term reductions in activity and movement post-capture.


Science of The Total Environment | 2015

Establishing a definition of polar bear (Ursus maritimus) health: a guide to research and management activities.

Kelly A. Patyk; Colleen Duncan; Pauline Nol; Christian Sonne; Kristin L. Laidre; Martyn E. Obbard; Øystein Wiig; Jon Aars; Eric V. Regehr; Lori L. Gustafson; Todd C. Atwood

The meaning of health for wildlife and perspectives on how to assess and measure health, are not well characterized. For wildlife at risk, such as some polar bear (Ursus maritimus) subpopulations, establishing comprehensive monitoring programs that include health status is an emerging need. Environmental changes, especially loss of sea ice habitat, have raised concern about polar bear health. Effective and consistent monitoring of polar bear health requires an unambiguous definition of health. We used the Delphi method of soliciting and interpreting expert knowledge to propose a working definition of polar bear health and to identify current concerns regarding health, challenges in measuring health, and important metrics for monitoring health. The expert opinion elicited through the exercise agreed that polar bear health is defined by characteristics and knowledge at the individual, population, and ecosystem level. The most important threats identified were in decreasing order: climate change, increased nutritional stress, chronic physiological stress, harvest management, increased exposure to contaminants, increased frequency of human interaction, diseases and parasites, and increased exposure to competitors. Fifteen metrics were identified to monitor polar bear health. Of these, indicators of body condition, disease and parasite exposure, contaminant exposure, and reproductive success were ranked as most important. We suggest that a cumulative effects approach to research and monitoring will improve the ability to assess the biological, ecological, and social determinants of polar bear health and provide measurable objectives for conservation goals and priorities and to evaluate progress.


PLOS ONE | 2014

Polar bears from space: Assessing satellite imagery as a tool to track Arctic wildlife

Seth Stapleton; Michelle A. LaRue; Nicolas Lecomte; Stephen N. Atkinson; David L. Garshelis; Claire Porter; Todd C. Atwood

Development of efficient techniques for monitoring wildlife is a priority in the Arctic, where the impacts of climate change are acute and remoteness and logistical constraints hinder access. We evaluated high resolution satellite imagery as a tool to track the distribution and abundance of polar bears. We examined satellite images of a small island in Foxe Basin, Canada, occupied by a high density of bears during the summer ice-free season. Bears were distinguished from other light-colored spots by comparing images collected on different dates. A sample of ground-truthed points demonstrated that we accurately classified bears. Independent observers reviewed images and a population estimate was obtained using mark–recapture models. This estimate (: 94; 95% Confidence Interval: 92–105) was remarkably similar to an abundance estimate derived from a line transect aerial survey conducted a few days earlier (: 102; 95% CI: 69–152). Our findings suggest that satellite imagery is a promising tool for monitoring polar bears on land, with implications for use with other Arctic wildlife. Large scale applications may require development of automated detection processes to expedite review and analysis. Future research should assess the utility of multi-spectral imagery and examine sites with different environmental characteristics.


Science | 2018

High-energy, high-fat lifestyle challenges an Arctic apex predator, the polar bear

Anthony M. Pagano; George M. Durner; Karyn D. Rode; Todd C. Atwood; Stephen N. Atkinson; Elizabeth Peacock; Daniel P. Costa; Megan A. Owen; Terrie M. Williams

A demanding lifestyle Polar bears appear to be well adapted to the extreme conditions of their Arctic habitat. Pagano et al., however, show that the energy balance in this harsh environment is narrower than we might expect (see the Perspective by Whiteman). They monitored the behavior and metabolic rates of nine free-ranging polar bears over 2 years. They found that high energy demands required consumption of high-fat prey, such as seals, which are easy to come by on sea ice but nearly unavailable in ice-free conditions. Thus, as sea ice becomes increasingly short-lived annually, polar bears are likely to experience increasingly stressful conditions and higher mortality rates. Science, this issue p. 568; see also p. 514 Polar bears’ high-energy lifestyle makes then reliant on sea ice–associated prey. Regional declines in polar bear (Ursus maritimus) populations have been attributed to changing sea ice conditions, but with limited information on the causative mechanisms. By simultaneously measuring field metabolic rates, daily activity patterns, body condition, and foraging success of polar bears moving on the spring sea ice, we found that high metabolic rates (1.6 times greater than previously assumed) coupled with low intake of fat-rich marine mammal prey resulted in an energy deficit for more than half of the bears examined. Activity and movement on the sea ice strongly influenced metabolic demands. Consequently, increases in mobility resulting from ongoing and forecasted declines in and fragmentation of sea ice are likely to increase energy demands and may be an important factor explaining observed declines in body condition and survival.


Science of The Total Environment | 2015

Enhanced biological processes associated with alopecia in polar bears (Ursus maritimus)

Lizabeth Bowen; A. Keith Miles; Jeffrey L. Stott; Shannon C. Waters; Todd C. Atwood

Populations of wildlife species worldwide experience incidents of mass morbidity and mortality. Primary or secondary drivers of these events may escape classical detection methods for identifying microbial insults, toxin exposure, or additional stressors. In 2012, 28% of polar bears sampled in a study in the southern Beaufort Sea region of Alaska had varying degrees of alopecia that was concomitant with reduced body condition. Concurrently, elevated numbers of sick or dead ringed seals were detected in the southern Beaufort, Chukchi, and Bering seas in 2012, resulting in the declaration of an unusual mortality event (UME) by the National Oceanic and Atmospheric Administration (NOAA). The primary and possible ancillary causative stressors of these events are unknown, and related physiological changes within individual animals have been undetectable using classical diagnostic methods. Here we present an emerging technology as a potentially guiding investigative approach aimed at elucidating the circumstances responsible for the susceptibility of certain polar bears to observed conditions. Using transcriptomic analysis we identified enhanced biological processes including immune response, viral defense, and response to stress in polar bears with alopecia. Our results support an alternative mechanism of investigation into the causative agents that, when used proactively, could serve as an early indicator for populations and species at risk. We suggest that current or classical methods for investigation into events of unusual morbidity and mortality can be costly, sometimes unfocused, and often inconclusive. Advances in technology allow for implementation of a holistic system of surveillance and investigation that could provide early warning of health concerns in wildlife species important to humans.


Journal of Wildlife Diseases | 2015

PREVALENCE AND SPATIO-TEMPORAL VARIATION OF AN ALOPECIA SYNDROME IN POLAR BEARS (URSUS MARITIMUS) OF THE SOUTHERN BEAUFORT SEA

Todd C. Atwood; Elizabeth Peacock; Kathy Burek-Huntington; Valerie I. Shearn-Bochsler; Barbara Bodenstein; Kimberlee B. Beckmen; George M. Durner

Abstract Alopecia (hair loss) has been observed in several marine mammal species and has potential energetic consequences for sustaining a normal core body temperature, especially for Arctic marine mammals routinely exposed to harsh environmental conditions. Polar bears (Ursus maritimus) rely on a thick layer of adipose tissue and a dense pelage to ameliorate convective heat loss while moving between sea ice and open water. From 1998 to 2012, we observed an alopecia syndrome in polar bears from the southern Beaufort Sea of Alaska that presented as bilaterally asymmetrical loss of guard hairs and thinning of the undercoat around the head, neck, and shoulders, which, in severe cases, was accompanied by exudation and crusted skin lesions. Alopecia was observed in 49 (3.45%) of the bears sampled during 1,421 captures, and the apparent prevalence varied by years with peaks occurring in 1999 (16%) and 2012 (28%). The probability that a bear had alopecia was greatest for subadults and for bears captured in the Prudhoe Bay region, and alopecic individuals had a lower body condition score than unaffected individuals. The cause of the syndrome remains unknown and future work should focus on identifying the causative agent and potential effects on population vital rates.

Collaboration


Dive into the Todd C. Atwood's collaboration.

Top Co-Authors

Avatar

George M. Durner

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

David C. Douglas

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Karyn D. Rode

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Elizabeth Peacock

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryan R. Wilson

United States Fish and Wildlife Service

View shared research outputs
Top Co-Authors

Avatar

Anthony M. Pagano

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colleen Duncan

Colorado State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge