Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Todd C. Harrop is active.

Publication


Featured researches published by Todd C. Harrop.


Journal of the American Chemical Society | 2008

Reactions of synthetic [2Fe-2S] and [4Fe-4S] clusters with nitric oxide and nitrosothiols

Todd C. Harrop; Zachary J. Tonzetich; Erwin Reisner; Stephen J. Lippard

The interaction of nitric oxide (NO) with iron-sulfur cluster proteins results in degradation and breakdown of the cluster to generate dinitrosyl iron complexes (DNICs). In some cases the formation of DNICs from such cluster systems can lead to activation of a regulatory pathway or the loss of enzyme activity. In order to understand the basic chemistry underlying these processes, we have investigated the reactions of NO with synthetic [2Fe-2S] and [4Fe-4S] clusters. Reaction of excess NO(g) with solutions of [Fe2S2(SR)4](2-) (R = Ph, p-tolyl (4-MeC6H4), or 1/2 (CH2)2-o-C6H4) cleanly affords the respective DNIC, [Fe(NO)2(SR)2](-), with concomitant reductive elimination of the bridging sulfide ligands as elemental sulfur. The structure of (Et4N)[Fe(NO)2(S-p-tolyl)2] was verified by X-ray crystallography. Reactions of the [4Fe-4S] clusters, [Fe4S4(SR)4](2-) (R = Ph, CH2Ph, (t)Bu, or 1/2 (CH2)-m-C6H4) proceed in the absence of added thiolate to yield Roussins black salt, [Fe4S3(NO)7](-). In contrast, (Et4N)2[Fe4S4(SPh)4] reacts with NO(g) in the presence of 4 equiv of (Et4N)(SPh) to yield the expected DNIC. For all reactions, we could reproduce the chemistry effected by NO(g) with the use of trityl-S-nitrosothiol (Ph3CSNO) as the nitric oxide source. These results demonstrate possible pathways for the reaction of iron-sulfur clusters with nitric oxide in biological systems and highlight the importance of thiolate-to-iron ratios in stabilizing DNICs.


Inorganic Chemistry | 2012

A Sensitive and Selective Fluorescence Sensor for the Detection of Arsenic(III) in Organic Media

Vivian C. Ezeh; Todd C. Harrop

Arsenic contamination is a leading environmental problem. As such, levels of this toxic metalloid must be constantly monitored by reliable and low-cost methodologies. Because the currently accepted upper limit for arsenic in water is 10 ppb, very sensitive and selective detection strategies must be developed. Herein we describe the synthesis and characterization of a fluorescent chemical probe, namely, ArsenoFluor1, which is the first example of a chemosensor for As(3+) detection in organic solvents at 298 K. AF1 exhibits a 25-fold fluorescence increase in the presence of As(3+) at λ(em) = 496 nm in THF, which is selective for As(3+) over other biologically relevant ions (such as Na(+), Mg(2+), Fe(2+), and Zn(2+)) and displays a sub-ppb detection limit.


Biochemistry | 2013

Synthetic Analogues of Nickel Superoxide Dismutase: A New Role for Nickel in Biology

Ellen P. Broering; Phan T. Truong; Eric M. Gale; Todd C. Harrop

Nickel-containing superoxide dismutases (NiSODs) represent a novel approach to the detoxification of superoxide in biology and thus contribute to the biodiversity of mechanisms for the removal of reactive oxygen species (ROS). While Ni ions play critical roles in anaerobic microbial redox (hydrogenases and CO dehydrogenase/acetyl coenzyme A synthase), they have never been associated with oxygen metabolism. Several SODs have been characterized from numerous sources and are classified by their catalytic metal as Cu/ZnSOD, MnSOD, or FeSOD. Whereas aqueous solutions of Cu(II), Mn(II), and Fe(II) ions are capable of catalyzing the dismutation of superoxide, solutions of Ni(II) are not. Nonetheless, NiSOD catalyzes the reaction at the diffusion-controlled limit (~10(9) M(-1) s(-1)). To do this, nature has created a Ni coordination unit with the appropriate Ni(III/II) redox potential (~0.090 V vs Ag/AgCl). This potential is achieved by a unique ligand set comprised of residues from the N-terminus of the protein: Cys2 and Cys6 thiolates, the amino terminus and imidazole side chain of His1, and a peptide N-donor from Cys2. Over the past several years, synthetic modeling efforts by several groups have provided insight into understanding the intrinsic properties of this unusual Ni coordination site. Such analogues have revealed information regarding the (i) electrochemical properties that support Ni-based redox, (ii) oxidative protection and/or stability of the coordinated CysS ligands, (iii) probable H(+) sources for H(2)O(2) formation, and (iv) nature of the Ni coordination geometry throughout catalysis. This review includes the results and implications of such biomimetic work as it pertains to the structure and function of NiSOD.


Chemical Science | 2012

A thermally stable {FeNO}8 complex: properties and biological reactivity of reduced MNO systems

Ashis K. Patra; Koustubh S. Dube; Brian C. Sanders; Georgia C. Papaefthymiou; Jeanet Conradie; Abhik Ghosh; Todd C. Harrop

Reduced nitrogen oxide ligands such as NO−/HNO or nitroxyl participate in chemistry distinct from nitric oxide (NO). Nitroxyl has been proposed to form at heme centers to generate the Enemark–Feltham designated {FeNO}8 system. The synthesis of a thermally stable {FeNO}8 species namely, [Co(Cp*)2][Fe(LN4)(NO)] (3), housed in a heme-like ligand platform has been achieved by reduction of the corresponding {FeNO}7 complex, [Fe(LN4)(NO)] (1), with decamethylcobaltocene [Co(Cp*)2] in toluene. This complex readily reacts with metMb, resulting in formation of MbNO via reductive nitrosylation by the coordinated HNO/NO−, which can be inhibited with GSH. These results suggest that 3 could serve as a potential HNO therapeutic. Spectroscopic, theoretical, and structural comparisons are made to 1 and the {CoNO}8 complex, [Co(LN4)(NO)] (2), an isoelectronic analogue of 3.


Inorganic Chemistry | 2009

Versatile Methodology Toward NiN2S2 Complexes as Nickel Superoxide Dismutase Models: Structure and Proton Affinity

Eric M. Gale; Ashis K. Patra; Todd C. Harrop

Structural features of the reduced form of the nickel superoxide dismutase (Ni-SOD) active site have been modeled with asymmetric NiN(2)S(2) complexes (Et(4)N)[Ni(nmp)(SR)] (R = C(6)H(4)-p-Cl (2) and (S(t)Bu) (3)) obtained via S,S-bridge splitting of the dimeric metallosynthon, [Ni(2)(nmp)(2)] (1). Complexes 2 and 3 are irreversibly oxidized at potentials within the window needed for SOD activity, 236 and 75 mV versus Ag/AgCl, respectively. The exogenous thiolato-S in 2 and 3 serves as a proton acceptor, suggesting potential involvement of Cys6 in Ni-SOD for H(+) storage between SOD half reactions.


Inorganic Chemistry | 2011

Dipeptide-Based Models of Nickel Superoxide Dismutase: Solvent Effects Highlight a Critical Role to Ni–S Bonding and Active Site Stabilization

Eric M. Gale; Darin M. Cowart; Robert A. Scott; Todd C. Harrop

Nickel superoxide dismutase (Ni-SOD) catalyzes the disproportionation of the superoxide radical to O(2) and H(2)O(2) utilizing the Ni(III/II) redox couple. The Ni center in Ni-SOD resides in an unusual coordination environment that is distinct from other SODs. In the reduced state (Ni-SOD(red)), Ni(II) is ligated to a primary amine-N from His1, anionic carboxamido-N/thiolato-S from Cys2, and a second thiolato-S from Cys6 to complete a NiN(2)S(2) square-planar coordination motif. Utilizing the dipeptide N(2)S(2-) ligand, H(2)N-Gly-l-Cys-OMe (GC-OMeH(2)), an accurate model of the structural and electronic contributions provided by His1 and Cys2 in Ni-SOD(red), we constructed the dinuclear sulfur-bridged metallosynthon, [Ni(2)(GC-OMe)(2)] (1). From 1 we prepared the following monomeric Ni(II)-N(2)S(2) complexes: K[Ni(GC-OMe)(SC(6)H(4)-p-Cl)] (2), K[Ni(GC-OMe)(S(t)Bu)] (3), K[Ni(GC-OMe)(SC(6)H(4)-p-OMe)] (4), and K[Ni(GC-OMe)(SNAc)] (5). The design strategy in utilizing GC-OMe(2-) is analogous to one which we reported before (see Inorg. Chem. 2009, 48, 5620 and Inorg. Chem. 2010, 49, 7080) where Ni-SOD(red) active site mimics can be assembled at will with electronically variant RS(-) ligands. Discussed herein is our initial account pertaining to the aqueous behavior of isolable, small-molecule Ni-SOD model complexes (non-maquette based). Spectroscopic (FTIR, UV-vis, ESI-MS, XAS) and electrochemical (CV) measurements suggest that 2-5 successfully simulate many of the electronic features of Ni-SOD(red). Furthermore, the aqueous studies reveal a dynamic behavior with regard to RS(-) lability and bridging interactions, suggesting a stabilizing role brought about by the protein architecture.


Chemical Communications | 2012

Exploring the intermediates of photochemical CO2 reduction: reaction of Re(dmb)(CO)3 COOH with CO2

Jay Agarwal; Brian C. Sanders; Etsuko Fujita; Henry F. Schaefer; Todd C. Harrop; James T. Muckerman

We have investigated the reaction of Re(dmb)(CO)(3)COOH with CO(2) using density functional theory, and propose a mechanism for the production of CO. This mechanism supports the role of Re(dmb)(CO)(3)COOH as a key intermediate in the formation of CO. Our new experimental work supports the proposed scheme.


Inorganic Chemistry | 2011

Toward functional Ni-SOD biomimetics: achieving a structural/electronic correlation with redox dynamics.

Eric M. Gale; Andrew C. Simmonett; Joshua Telser; Henry F. Schaefer; Todd C. Harrop

We have prepared and characterized a Ni complex with an N(3)S(2) ligand set (1) that represents the first isolable synthetic model of the reduced form of the Ni-SOD (SOD = superoxide dismutase) active site featuring all relevant donor functionality in the proper spatial distribution. As revealed by X-ray crystallography, the axial py-N donor of 1 does not bind Ni(II) in the solid state or in solution like SOD. Oxidation of 1 provides a disulfide-linked dinuclear species, [{Ni(N(3)S(2))}(2)] (2), which we have isolated and characterized. Moreover, the 1 → 2 conversion is reversible, much like redox cycling in the enzyme.


Inorganic Chemistry | 2013

Synthesis and properties of arsenic(III)-reactive coumarin-appended benzothiazolines: a new approach for inorganic arsenic detection.

Vivian C. Ezeh; Todd C. Harrop

The EPA has established a maximum contaminant level (MCL) of 10 ppb for arsenic (As) in drinking water requiring sensitive and selective detection methodologies. To tackle this challenge, we have been active in constructing small molecules that react specifically with As(3+) to furnish a new fluorescent species (termed a chemodosimeter). We report in this contribution, the synthesis and spectroscopy of two small-molecule fluorescent probes that we term ArsenoFluors (or AFs) as As-specific chemodosimeters. The AFs (AF1 and AF2) incorporate a coumarin fluorescent reporter coupled with an As-reactive benzothiazoline functional group. AFs react with As(3+) to yield the highly fluorescent coumarin-6 dye (C6) resulting in a 20-25-fold fluorescence enhancement at λem ∼ 500 nm with detection limits of 0.14-0.23 ppb in tetrahydrofuran (THF) at 298 K. The AFs also react with common environmental As(3+) sources such as sodium arsenite in a THF/CHES (N-cyclohexyl-2-aminoethanesulfonic acid) (1:1, pH 9, 298 K) mixture resulting in a modest fluorescence turn-ON (1.5- to 3-fold) due to the quenched nature of coumarin-6 derivatives in high polarity solvents. Bulk analysis of the reaction of the AFs with As(3+) revealed that the C6 derivatives and the Schiff-base disulfide of the AFs (SB1 and SB2) are the ultimate end-products of this chemistry with the formation of C6 being the principle photoproduct responsible for the As(3+)-specific turn-ON. It appears that a likely species that is traversed in the reaction path is an As-hydride-ligand complex that is a putative intermediate in the proposed reaction path.


Inorganic Chemistry | 2010

Stable eight-coordinate iron(III/II) complexes.

Ashis K. Patra; Koustubh S. Dube; Georgia C. Papaefthymiou; Jeanet Conradie; Abhik Ghosh; Todd C. Harrop

The chemistry of unusual coordination numbers of transition-metal complexes has been of interest because of their presence in biology and catalytic systems. Herein we describe a systematic and predictable approach toward isolation of stable eight-coordinate (8C) iron(III/II) systems. The 8C (S = 2; high-spin, HS) complex [Fe(L(N4))(2)](BF(4))(2) (1) has been synthesized and characterized, displaying a distorted square-antiprism structure. Complex 1 is a unique 8C iron complex that exhibits remarkable stability in solution under various unfavorable conditions. The E(1/2) value of 1 (0.430 V vs Ag/AgCl, MeCN) supports the Fe(II) oxidation state; however, the corresponding HS (S = 5/2) 8C Fe(III) analogue [Fe(L(N4))(2)](NO(3))(3) (3) has also been synthesized via the chemical oxidation of 1. The structural, spectroscopic, and theoretical descriptions of these 8C iron complexes are reported in this work.

Collaboration


Dive into the Todd C. Harrop's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashis K. Patra

Indian Institute of Technology Kanpur

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeanet Conradie

University of the Free State

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen J. Lippard

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge