Todd C. McDevitt
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Todd C. McDevitt.
Cell | 2013
Jennifer E. Phillips-Cremins; Michael Eg Sauria; Amartya Sanyal; Tatiana Gerasimova; Bryan R. Lajoie; Joshua S.K. Bell; Chin‑Tong Ong; Tracy A. Hookway; Changying Guo; Yuhua Sun; Michael J. Bland; William Andrew Wagstaff; Stephen Dalton; Todd C. McDevitt; Ranjan Sen; Job Dekker; James Taylor; Victor G. Corces
Understanding the topological configurations of chromatin may reveal valuable insights into how the genome and epigenome act in concert to control cell fate during development. Here, we generate high-resolution architecture maps across seven genomic loci in embryonic stem cells and neural progenitor cells. We observe a hierarchy of 3D interactions that undergo marked reorganization at the submegabase scale during differentiation. Distinct combinations of CCCTC-binding factor (CTCF), Mediator, and cohesin show widespread enrichment in chromatin interactions at different length scales. CTCF/cohesin anchor long-range constitutive interactions that might form the topological basis for invariant subdomains. Conversely, Mediator/cohesin bridge short-range enhancer-promoter interactions within and between larger subdomains. Knockdown of Smc1 or Med12 in embryonic stem cells results in disruption of spatial architecture and downregulation of genes found in cohesin-mediated interactions. We conclude that cell-type-specific chromatin organization occurs at the submegabase scale and that architectural proteins shape the genome in hierarchical length scales.
Nature Materials | 2014
William L. Murphy; Todd C. McDevitt; Adam J. Engler
The stem cell/material interface is a complex, dynamic microenvironment in which the cell and the material cooperatively dictate one anothers fate: the cell by remodelling its surroundings, and the material through its inherent properties (such as adhesivity, stiffness, nanostructure or degradability). Stem cells in contact with materials are able to sense their properties, integrate cues via signal propagation and ultimately translate parallel signalling information into cell fate decisions. However, discovering the mechanisms by which stem cells respond to inherent material characteristics is challenging because of the highly complex, multicomponent signalling milieu present in the stem cell environment. In this Review, we discuss recent evidence that shows that inherent material properties may be engineered to dictate stem cell fate decisions, and overview a subset of the operative signal transduction mechanisms that have begun to emerge. Further developments in stem cell engineering and mechanotransduction are poised to have substantial implications for stem cell biology and regenerative medicine.
Regenerative Medicine | 2010
Priya R. Baraniak; Todd C. McDevitt
Stem cells have emerged as a key element of regenerative medicine therapies due to their inherent ability to differentiate into a variety of cell phenotypes, thereby providing numerous potential cell therapies to treat an array of degenerative diseases and traumatic injuries. A recent paradigm shift has emerged suggesting that the beneficial effects of stem cells may not be restricted to cell restoration alone, but also due to their transient paracrine actions. Stem cells can secrete potent combinations of trophic factors that modulate the molecular composition of the environment to evoke responses from resident cells. Based on this new insight, current research directions include efforts to elucidate, augment and harness stem cell paracrine mechanisms for tissue regeneration. This article discusses the existing studies on stem/progenitor cell trophic factor production, implications for tissue regeneration and cancer therapies, and development of novel strategies to use stem cell paracrine delivery for regenerative medicine.
Biotechnology Progress | 2009
Andrés M. Bratt-Leal; Richard L. Carpenedo; Todd C. McDevitt
Embryonic stem cells (ESCs) are pluripotent cells capable of differentiating into all somatic and germ cell types. The intrinsic ability of pluripotent cells to generate a vast array of different cells makes ESCs a robust resource for a variety of cell transplantation and tissue engineering applications, however, efficient and controlled means of directing ESC differentiation is essential for the development of regenerative therapies. ESCs are commonly differentiated in vitro by spontaneously self‐assembling in suspension culture into 3D cell aggregates called embryoid bodies (EBs), which mimic many of the hallmarks of early embryonic development, yet the 3D organization and structure of EBs also presents unique challenges to effectively direct the differentiation of the cells. ESC differentiation is strongly influenced by physical and chemical signals comprising the local extracellular microenvironment, thus current methods to engineer EB differentiation have focused primarily on spatially controlling EB size, adding soluble factors to the media, or culturing EBs on or within natural or synthetic extracellular matrices. Although most such strategies aim to influence differentiation from the exterior of EBs, engineering the microenvironment directly within EBs enables new opportunities to efficiently direct the fate of the cells by locally controlling the presentation of morphogenic cues.
Stem Cells | 2007
Richard L. Carpenedo; Carolyn Y. Sargent; Todd C. McDevitt
Embryonic stem (ES) cells hold great promise as a robust cell source for cell‐based therapies and as a model of early embryonic development. Current experimental methods for differentiation of ES cells via embryoid body (EB) formation are either inherently incapable of larger‐scale production or exhibit limited control over cell aggregation during EB formation and subsequent EB agglomeration. This report describes and characterizes a novel method for formation of EBs using rotary orbital motion that simultaneously addresses both concerns. EBs formed under rotary suspension conditions were compared with hanging‐drop and static EBs for efficiency of EB formation, cell and EB yield, homogeneity of EB size and shape, and gene expression. A 20‐fold enhancement in the number of cells incorporated into primitive EBs in rotary versus static conditions was detected after the first 12 hours, and a fourfold increase in total cell yield was achieved by rotary culture after 7 days. Morphometric analysis of EBs demonstrated formation and maintenance of a more uniform EB population under rotary conditions compared with hanging‐drop and static conditions. Quantitative gene expression analysis indicated that rotary EBs differentiated normally, on the basis of expression of ectoderm, endoderm, and mesoderm markers. Increased levels of endoderm gene expression, along with cystic EB formation, indicated by histological examination, suggested that differentiation was accelerated in rotary EBs. Thus, the rotary suspension culture method can produce a highly uniform population of efficiently differentiating EBs in large quantities in a manner that can be easily implemented by basic research laboratories conducting ES cell differentiation studies.
Cell and Tissue Research | 2012
Priya R. Baraniak; Todd C. McDevitt
While traditional cell culture methods have relied on growing cells as monolayers, three-dimensional (3D) culture systems can provide a convenient in vitro model for the study of complex cell–cell and cell–matrix interactions in the absence of exogenous substrates and may benefit the development of regenerative medicine strategies. In this study, mesenchymal stem cell (MSC) spheroids, or “mesenspheres”, of different sizes, were formed using a forced aggregation technique and maintained in suspension culture for extended periods of time thereafter. Cell proliferation and differentiation potential within mesenspheres and dissociated cells retrieved from spheroids were compared to conventional adherent monolayer cultures. Mesenspheres maintained in growth medium exhibited no evidence of cell necrosis or differentiation, while mesenspheres in differentiation media exhibited differentiation similar to conventional 2D culture methods based on histological markers of osteogenic and adipogenic commitment. Furthermore, when plated onto tissue culture plates, cells that had been cultured within mesenspheres in growth medium recovered morphology typical of cells cultured continuously in adherent monolayers and retained their capacity for multi-lineage differentiation potential. In fact, more robust matrix mineralization and lipid vacuole content were evident in recovered MSCs when compared to monolayers, suggesting enhanced differentiation by cells cultured as 3D spheroids. Thus, this study demonstrates the development of a 3D culture system for mesenchymal stem cells that may circumvent limitations associated with conventional monolayer cultures and enhance the differentiation potential of multipotent cells.
Biomaterials | 2011
Andrés M. Bratt-Leal; Richard L. Carpenedo; Mark Ungrin; Peter W. Zandstra; Todd C. McDevitt
Biomaterials are increasingly being used to engineer the biochemical and biophysical properties of the extracellular stem cell microenvironment in order to tailor niche characteristics and direct cell phenotype. To date, stem cell-biomaterial interactions have largely been studied by introducing stem cells into artificial environments, such as 2D cell culture on biomaterial surfaces, encapsulation of cell suspensions within hydrogel materials, or cell seeding on 3D polymeric scaffolds. In this study, microparticles fabricated from different materials, such as agarose, PLGA and gelatin, were stably integrated, in a dose-dependent manner, within aggregates of pluripotent stem cells (PSCs) prior to differentiation as a means to directly examine stem cell-biomaterial interactions in 3D. Interestingly, the presence of the materials within the stem cell aggregates differentially modulated the gene and protein expression patterns of several differentiation markers without adversely affecting cell viability. Microparticle incorporation within 3D stem cell aggregates can control the spatial presentation of extracellular environmental cues (i.e. soluble factors, extracellular matrix and intercellular adhesion molecules) as a means to direct the differentiation of stem cells for tissue engineering and regenerative medicine applications. In addition, these results suggest that the physical presence of microparticles within stem cell aggregates does not compromise PSC differentiation, but in fact the choice of biomaterials can impact the propensity of stem cells to adopt particular differentiated cell phenotypes.
Biomaterials | 2009
Richard L. Carpenedo; Andrés M. Bratt-Leal; Ross A. Marklein; Scott A. Seaman; Nathan J. Bowen; John F. McDonald; Todd C. McDevitt
Cell specification and tissue formation during embryonic development are precisely controlled by the local concentration and temporal presentation of morphogenic factors. Similarly, pluripotent embryonic stem cells can be induced to differentiate in vitro into specific phenotypes in response to morphogen treatment. Embryonic stem cells (ESCs) are commonly differentiated as 3D spheroids referred to as embryoid bodies (EBs); however, differentiation of cells within EBs is typically heterogeneous and disordered. In this study, we demonstrate that in contrast to soluble morphogen treatment, delivery of morphogenic factors directly within EB microenvironments in a spatiotemporally controlled manner using polymer microspheres yields homogeneous, synchronous and organized ESC differentiation. Degradable PLGA microspheres releasing retinoic acid were incorporated directly within EBs and induced the formation of cystic spheroids uniquely resembling the phenotype and structure of early streak mouse embryos (E6.75), with an exterior of FOXA2+ visceral endoderm enveloping an epiblast-like layer of OCT4+ cells. These results demonstrate that controlled morphogen presentation to stem cells using degradable microspheres more efficiently directs cell differentiation and tissue formation than simple soluble delivery methods and presents a unique route to study the spatiotemporal effects of morphogenic factors on embryonic developmental processes in vitro.
Biotechnology and Bioengineering | 2010
Carolyn Y. Sargent; Geoffrey Y. Berguig; Melissa A. Kinney; Luke A. Hiatt; Richard L. Carpenedo; R. Eric Berson; Todd C. McDevitt
Embryonic stem cells (ESCs) can differentiate into all somatic cell types, but the development of effective strategies to direct ESC fate is dependent upon defining environmental parameters capable of influencing cell phenotype. ESCs are commonly differentiated via cell aggregates referred to as embryoid bodies (EBs), but current culture methods, such as hanging drop and static suspension, yield relatively few or heterogeneous populations of EBs. Alternatively, rotary orbital suspension culture enhances EB formation efficiency, cell yield, and homogeneity without adversely affecting differentiation. Thus, the objective of this study was to systematically examine the effects of hydrodynamic conditions created by rotary orbital shaking on EB formation, structure, and differentiation. Mouse ESCs introduced to suspension culture at a range of rotary orbital speeds (20–60 rpm) exhibited variable EB formation sizes and yields due to differences in the kinetics of cell aggregation. Computational fluid dynamic analyses indicated that rotary orbital shaking generated relatively uniform and mild shear stresses (≤2.5 dyn/cm2) within the regions EBs occupied in culture dishes, at each of the orbital speeds examined. The hydrodynamic conditions modulated EB structure, indicated by differences in the cellular organization and morphology of the spheroids. Compared to static culture, exposure to hydrodynamic conditions significantly altered the gene expression profile of EBs. Moreover, varying rotary orbital speeds differentially modulated the kinetic profile of gene expression and relative percentages of differentiated cell types. Overall, this study demonstrates that manipulation of hydrodynamic environments modulates ESC differentiation, thus providing a novel, scalable approach to integrate into the development of directed stem cell differentiation strategies. Biotechnol. Bioeng. 2010; 105: 611–626.
Biotechnology and Bioengineering | 2013
Jenna L. Wilson; Todd C. McDevitt
Cell microencapsulation has been utilized for decades as a means to shield cells from the external environment while simultaneously permitting transport of oxygen, nutrients, and secretory molecules. In designing cell therapies, donor primary cells are often difficult to obtain and expand to appropriate numbers, rendering stem cells an attractive alternative due to their capacities for self‐renewal, differentiation, and trophic factor secretion. Microencapsulation of stem cells offers several benefits, namely the creation of a defined microenvironment which can be designed to modulate stem cell phenotype, protection from hydrodynamic forces and prevention of agglomeration during expansion in suspension bioreactors, and a means to transplant cells behind a semi‐permeable barrier, allowing for molecular secretion while avoiding immune reaction. This review will provide an overview of relevant microencapsulation processes and characterization in the context of maintaining stem cell potency, directing differentiation, investigating scalable production methods, and transplanting stem cells for clinically relevant disorders. Biotechnol. Bioeng. 2013; 110: 667–682.