Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Todd Covey is active.

Publication


Featured researches published by Todd Covey.


Clinical Cancer Research | 2010

Dynamic Single-Cell Network Profiles in Acute Myelogenous Leukemia Are Associated with Patient Response to Standard Induction Therapy

Steven M. Kornblau; Mark D. Minden; David B. Rosen; Santosh Putta; Aileen Cohen; Todd Covey; David C. Spellmeyer; Wendy J. Fantl; Urte Gayko; Alessandra Cesano

Purpose: Complete response to induction chemotherapy is observed in ∼60% of patients with newly diagnosed non-M3 acute myelogenous leukemia (AML). However, no methods exist to predict with high accuracy at the individual patient level the response to standard AML induction therapy. Experimental Design: We applied single-cell network profiling (SCNP) using flow cytometry, a tool that allows a comprehensive functional assessment of intracellular signaling pathways in heterogeneous tissues, to two training cohorts of AML samples (n = 34 and 88) to predict the likelihood of response to induction chemotherapy. Results: In the first study, univariate analysis identified multiple signaling “nodes” (readouts of modulated intracellular signaling proteins) that correlated with response (i.e., AUCROC ≥ 0.66; P ≤ 0.05) at a level greater than age. After accounting for age, similar findings were observed in the second study. For patients <60 years old, complete response was associated with the presence of intact apoptotic pathways. In patients ≥60 years old, nonresponse was associated with FLT3 ligand–mediated increase in phosphorylated Akt and phosphorylated extracellular signal-regulated kinase. Results were independent of cytogenetics, FLT3 mutational status, and diagnosis of secondary AML. Conclusions: These data emphasize the value of performing quantitative SCNP under modulated conditions as a basis for the development of tests highly predictive for response to induction chemotherapy. SCNP provides information distinct from other known prognostic factors such as age, secondary AML, cytogenetics, and molecular alterations and is potentially combinable with the latter to improve clinical decision making. Independent validation studies are warranted. Clin Cancer Res; 16(14); 3721–33. ©2010 AACR.


Disease Models & Mechanisms | 2014

The role of the DNA damage response in zebrafish and cellular models of Diamond Blackfan anemia.

Nadia Danilova; Elena Bibikova; Todd Covey; David Nathanson; Elizabeth Dimitrova; Yoan Konto; Anne Lindgren; Bertil Glader; Caius G. Radu; Kathleen M. Sakamoto; Shuo Lin

Ribosomal biogenesis involves the processing of pre-ribosomal RNA. A deficiency of some ribosomal proteins (RPs) impairs processing and causes Diamond Blackfan anemia (DBA), which is associated with anemia, congenital malformations and cancer. p53 mediates many features of DBA, but the mechanism of p53 activation remains unclear. Another hallmark of DBA is the upregulation of adenosine deaminase (ADA), indicating changes in nucleotide metabolism. In RP-deficient zebrafish, we found activation of both nucleotide catabolism and biosynthesis, which is consistent with the need to break and replace the faulty ribosomal RNA. We also found upregulation of deoxynucleotide triphosphate (dNTP) synthesis – a typical response to replication stress and DNA damage. Both RP-deficient zebrafish and human hematopoietic cells showed activation of the ATR/ATM-CHK1/CHK2/p53 pathway. Other features of RP deficiency included an imbalanced dNTP pool, ATP depletion and AMPK activation. Replication stress and DNA damage in cultured cells in non-DBA models can be decreased by exogenous nucleosides. Therefore, we treated RP-deficient zebrafish embryos with exogenous nucleosides and observed decreased activation of p53 and AMPK, reduced apoptosis, and rescue of hematopoiesis. Our data suggest that the DNA damage response contributes to p53 activation in cellular and zebrafish models of DBA. Furthermore, the rescue of RP-deficient zebrafish with exogenous nucleosides suggests that nucleoside supplements could be beneficial in the treatment of DBA.


Clinical Cancer Research | 2017

The Bruton's tyrosine kinase (BTK) inhibitor acalabrutinib demonstrates potent on-target effects and efficacy in two mouse models of chronic lymphocytic leukemia

Sarah E.M. Herman; Arnau Montraveta; Carsten U. Niemann; Helena Mora-Jensen; Michael Gulrajani; Fanny Krantz; Rose Mantel; Lisa L. Smith; Fabienne McClanahan; Bonnie K. Harrington; Dolors Colomer; Todd Covey; John C. Byrd; Raquel Izumi; Allard Kaptein; Roger Ulrich; Amy J. Johnson; Brian Lannutti; Adrian Wiestner; Jennifer A. Woyach

Purpose: Acalabrutinib (ACP-196) is a novel, potent, and highly selective Bruton tyrosine kinase (BTK) inhibitor, which binds covalently to Cys481 in the ATP-binding pocket of BTK. We sought to evaluate the antitumor effects of acalabrutinib treatment in two established mouse models of chronic lymphocytic leukemia (CLL). Experimental Design: Two distinct mouse models were used, the TCL1 adoptive transfer model where leukemic cells from Eμ-TCL1 transgenic mice are transplanted into C57BL/6 mice, and the human NSG primary CLL xenograft model. Mice received either vehicle or acalabrutinib formulated into the drinking water. Results: Utilizing biochemical assays, we demonstrate that acalabrutinib is a highly selective BTK inhibitor as compared with ibrutinib. In the human CLL NSG xenograft model, treatment with acalabrutinib demonstrated on-target effects, including decreased phosphorylation of PLCγ2, ERK, and significant inhibition of CLL cell proliferation. Furthermore, tumor burden in the spleen of the mice treated with acalabrutinib was significantly decreased compared with vehicle-treated mice. Similarly, in the TCL1 adoptive transfer model, decreased phosphorylation of BTK, PLCγ2, and S6 was observed. Most notably, treatment with acalabrutinib resulted in a significant increase in survival compared with mice receiving vehicle. Conclusions: Treatment with acalabrutinib potently inhibits BTK in vivo, leading to on-target decreases in the activation of key signaling molecules (including BTK, PLCγ2, S6, and ERK). In two complementary mouse models of CLL, acalabrutinib significantly reduced tumor burden and increased survival compared with vehicle treatment. Overall, acalabrutinib showed increased BTK selectivity compared with ibrutinib while demonstrating significant antitumor efficacy in vivo on par with ibrutinib. Clin Cancer Res; 23(11); 2831–41. ©2016 AACR.


Cancer Research | 2015

Abstract 2596: ACP-196: a novel covalent Bruton's tyrosine kinase (Btk) inhibitor with improved selectivity and in vivo target coverage in chronic lymphocytic leukemia (CLL) patients

Todd Covey; Tjeerd Barf; Michael Gulrajani; Fanny Krantz; Bart Van Lith; Elena Bibikova; Bas van de Kar; Edwin de Zwart; Ahmed Hamdy; Raquel Izumi; Allard Kaptein

Ibrutinib, a first generation Btk inhibitor, is approved for the treatment of CLL and mantle cell lymphoma; known toxicities include atrial fibrillation, diarrhea, rash, arthralgia and bleeding events (1). Recent reports show ibrutinib9s off target effects may negatively impact its potential for combined therapy with anti-CD20 antibodies (2,3). Here we describe the pharmacologic characterization of ACP-196 a potent, novel second generation Btk inhibitor, which binds covalently to Cys481 with improved selectivity and in vivo target coverage. Compared to ibrutinib and CC-292, ACP-196 demonstrated higher selectivity for Btk when profiled against a panel of 395 non-mutant kinases (1 μM) in a competitive binding assay. IC50 determinations on 9 kinases with a Cys in the same position as Btk showed ACP-196 to be the most selective. The improved selectivity is related to the reduced intrinsic reactivity of ACP-1969s electrophile. Importantly, unlike ibrutinib, ACP-196 did not inhibit EGFR, Itk or Txk. Phosphoflow assays on EGFR expressing cell lines confirmed ibrutinib9s EGFR inhibition (EC50: 47-66 nM) with no inhibition observed for ACP-196 at 10 μM. These data may explain the ibrutinib-related incidence of diarrhea and rash. Ibrutinib9s potency on Itk and Txk may explain why it interferes with cell-mediated anti-tumor activities of therapeutic CD20 antibodies and immune-mediated killing in the tumor microenvironment (2,3). In human whole blood, ACP-196 and ibrutinib showed robust and equipotent inhibitory activity on B-cell receptor induced responses in the low nM range, whereas CC-292 was 10-20 fold less potent. In vivo, oral administration of ACP-196 in mice resulted in dose-dependent inhibition of anti-IgM-induced CD86 expression in CD19+ splenocytes with an ED50 of 0.34 mg/kg compared to 0.91 mg/kg for ibrutinib. A similar model was used to compare the duration of Btk inhibition after a single oral dose of 25 mg/kg. ACP-196 and ibrutinib inhibited CD86 expression >90% at 3h and ∼50% at 24h postdose. In contrast, CC-292 inhibited ∼50% at 3h and ∼20% at 24h postdose. An ELISA based Btk target occupancy assay was developed to measure target coverage in preclinical and clinical studies. In healthy volunteers, ACP-196 at an oral dose of 100 mg QD showed >90% target coverage over a 24h period. Btk occupancy and regulation of the PD markers (CD69 and CD86) correlated with PK parameters for exposure. In CLL patients, after 7 days of dosing with ACP-196 at 200 mg QD, 94% Btk target occupancy was observed compared with ∼80% reported for ibrutinib at 420 mg QD (4). In conclusion, ACP-196 is a novel Btk inhibitor with key pharmacologic differentiators versus ibrutinib and CC-292. ACP-196 is currently being evaluated in clinical trials. 1. IMBRUVICA package insert 2014 2. Rajasekaran Blood 2014 Abstr # 3118 3. Da Roit Haematologica 2014 4. Byrd NEJM 2013 Citation Format: Todd Covey, Tjeerd Barf, Michael Gulrajani, Fanny Krantz, Bart van Lith, Elena Bibikova, Bas van de Kar, Edwin de Zwart, Ahmed Hamdy, Raquel Izumi, Allard Kaptein. ACP-196: a novel covalent Bruton9s tyrosine kinase (Btk) inhibitor with improved selectivity and in vivo target coverage in chronic lymphocytic leukemia (CLL) patients. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 2596. doi:10.1158/1538-7445.AM2015-2596


Best Practice & Research Clinical Haematology | 2010

Modulated multiparametric phosphoflow cytometry in hematological malignancies: technology and clinical applications

Todd Covey; Alessandra Cesano

The advent of modulated multiparameter phosphoflow cytometry allows insight into the complexity of signal transduction networks in distinct cell subsets within a complex tissue sample. The application of this technology to hematopoietic malignancies can reveal pathogenic signaling profiles in intact tumor cells. Here, we review recent studies demonstrating the advantages and utility of this technology to inform the biological characterization of tumor cells and its applications to clinical medicine and drug development. Further, we discuss standardization and quality control approaches necessary for the adoption of this technique into clinical flow cytometry laboratories.


Journal of Pharmacology and Experimental Therapeutics | 2017

Acalabrutinib (ACP-196): A Covalent Bruton Tyrosine Kinase Inhibitor with a Differentiated Selectivity and In Vivo Potency Profile

Tjeerd Barf; Todd Covey; Raquel Izumi; Bas van de Kar; Michael Gulrajani; Bart Van Lith; Maaike van Hoek; Edwin de Zwart; Diana Mittag; Dennis Demont; Saskia Verkaik; Fanny Krantz; Paul G. Pearson; Roger Ulrich; Allard Kaptein

Several small-molecule Bruton tyrosine kinase (BTK) inhibitors are in development for B cell malignancies and autoimmune disorders, each characterized by distinct potency and selectivity patterns. Herein we describe the pharmacologic characterization of BTK inhibitor acalabrutinib [compound 1, ACP-196 (4-[8-amino-3-[(2S)-1-but-2-ynoylpyrrolidin-2-yl]imidazo[1,5-a]pyrazin-1-yl]-N-(2-pyridyl)benzamide)]. Acalabrutinib possesses a reactive butynamide group that binds covalently to Cys481 in BTK. Relative to the other BTK inhibitors described here, the reduced intrinsic reactivity of acalabrutinib helps to limit inhibition of off-target kinases having cysteine-mediated covalent binding potential. Acalabrutinib demonstrated higher biochemical and cellular selectivity than ibrutinib and spebrutinib (compounds 2 and 3, respectively). Importantly, off-target kinases, such as epidermal growth factor receptor (EGFR) and interleukin 2-inducible T cell kinase (ITK), were not inhibited. Determination of the inhibitory potential of anti-immunoglobulin M–induced CD69 expression in human peripheral blood mononuclear cells and whole blood demonstrated that acalabrutinib is a potent functional BTK inhibitor. In vivo evaluation in mice revealed that acalabrutinib is more potent than ibrutinib and spebrutinib. Preclinical and clinical studies showed that the level and duration of BTK occupancy correlates with in vivo efficacy. Evaluation of the pharmacokinetic properties of acalabrutinib in healthy adult volunteers demonstrated rapid absorption and fast elimination. In these healthy individuals, a single oral dose of 100 mg showed approximately 99% median target coverage at 3 and 12 hours and around 90% at 24 hours in peripheral B cells. In conclusion, acalabrutinib is a BTK inhibitor with key pharmacologic differentiators versus ibrutinib and spebrutinib and is currently being evaluated in clinical trials.


Autoimmunity | 2010

Single-cell network profiling (SCNP) by flow cytometry in autoimmune disease

Todd Covey; Alessandra Cesano; David Parkinson

Autoimmune diseases are complex and heterogeneous in nature and show varying responses to therapeutic treatment. A more accurate biological characterization of individual patients would assist in disease classification, prognosis, and treatment decisions. This characterization ideally would incorporate cellular, biochemical, and molecular information that contribute to the inflammatory state. The advent of single-cell network profiling (SCNP) using phospho-flow multiparametric flow cytometry allows insight into the complexity of signaling networks in various cell types. Here, we describe the potential of SCNP to inform on the biological characterization of autoimmune disease, the application in clinical medicine, and the utility in drug development.


Clinical Cancer Research | 2017

Combined BTK and PI3Kδ Inhibition with Acalabrutinib and ACP-319 Improves Survival and Tumor Control in CLL Mouse Model

Carsten U. Niemann; Helena Mora-Jensen; Eman L. Dadashian; Fanny Krantz; Todd Covey; Shih-Shih Chen; Nicholas Chiorazzi; Raquel Izumi; Roger Ulrich; Brian Lannutti; Adrian Wiestner; Sarah E.M. Herman

Purpose: Targeting the B-cell receptor (BCR) pathway with inhibitors of Bruton tyrosine kinase (BTK) and PI3Kδ is highly effective for the treatment of chronic lymphocytic leukemia (CLL). However, deep remissions are uncommon, and drug resistance with single-agent therapy can occur. In vitro studies support the effectiveness of combing PI3Kδ and BTK inhibitors. Experimental Design: As CLL proliferation and survival depends on the microenvironment, we used murine models to assess the efficacy of the BTK inhibitor acalabrutinib combined with the PI3Kδ inhibitor ACP-319 in vivo. We compared single-agent with combination therapy in TCL1-192 cell–injected mice, a model of aggressive CLL. Results: We found significantly larger reductions in tumor burden in the peripheral blood and spleen of combination-treated mice. Although single-agent therapy improved survival compared with control mice by a few days, combination therapy extended survival by over 2 weeks compared with either single agent. The combination reduced tumor proliferation, NF-κB signaling, and expression of BCL-xL and MCL-1 more potently than single-agent therapy. Conclusions: The combination of acalabrutinib and ACP-319 was superior to single-agent treatment in a murine CLL model, warranting further investigation of this combination in clinical studies. Clin Cancer Res; 23(19); 5814–23. ©2017 AACR.


Cancer Research | 2015

Abstract 408: ACP-196, an orally bioavailable covalent selective inhibitor of Btk, modulates the innate tumor microenvironment, exhibits antitumor efficacy and enhances gemcitabine activity in pancreatic cancer

Brian Lannutti; Michael Gulrajani; Fanny Krantz; Elena Bibikova; Todd Covey; Katti Jessen; Wayne Rothbaum; David Michael Johnson; Roger Ulrich

Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA Pancreatic ductal adenocarcinoma exists in a complex desmoplastic microenvironment that provides stromal support for tumor growth and conceals the tumor from immune surveillance. Tumor-associated stroma comprises a mix of fibroblasts, immunosuppressive T regulatory cells (Tregs), myeloid suppressive monocytes (MDSCs) and tumor-associated macrophages (TAMs) that promote tumor growth and restrain immune-mediated tumor cell killing. The targeting of immune infiltrates may impair stromal support and enhance immune-mediated killing of pancreatic cancer cells. Brutons tyrosine kinase (Btk) is a nonreceptor enzyme in the Tec kinase family expressed among cells of hematopoietic origin including B cells, myeloid cells, mast cells and platelets, but not T cells, where it regulates multiple cellular processes. Here we describe an unexpected finding of ACP-196, a potent, novel, second generation Btk inhibitor with improved selectivity and target coverage that binds covalently to a cysteine residue (Cys481) in the front position of the ATP-binding pocket. In an orthotopic mouse model of pancreatic cancer, KPC derived pancreatic cancer cells (KrasG12D; Trp53R172H; Pdx1-Cre) were injected into the pancreases. Vehicle, single agent ACP-196 (15 mg/kg/BID, gavage), single agent gemcitabine (50 mg/kg, IV) and combination ACP-196 with gemcitabine were evaluated for efficacy. By 4 weeks of treatment, mice in the vehicle group showed signs of health deterioration and all mice were euthanized, tumors were collected and measured. Relative to the vehicle treatment, ACP-196 monotherapy resulted in a >2-fold reduction in tumor growth compared with less than a 2-fold reduction with gemcitabine alone. The combination of ACP-196 and gemcitabine resulted in a further reduction in tumor growth when compared to each single agent. Interestingly, analysis of tumor tissues showed that single agent ACP-196 inhibited immunosuppressive populations of TAMs and MDSCs. Surprisingly, Treg populations were also reduced with a robust expansion of CD8+ T cells in the tumors. None of these effects were observed with gemcitabine alone. Although Btk is not expressed in T cells, this finding maybe the result of inhibiting the MDSC and TAM populations within the tumor microenvironment, a mechanism of action which is currently under investigation. Taken together, these data identify Btk as a novel target for modulating tumor immune escape and suggest that pharmacologic targeting of suppressive myeloid cells by ACP-196 induces therapeutic benefit. ACP-196 is currently being evaluated in clinical trials including frontline and salvage pancreatic cancer. Citation Format: Brian J. Lannutti, Michael Gulrajani, Fanny Krantz, Elena Bibikova, Todd Covey, Katti Jessen, Wayne Rothbaum, David M. Johnson, Roger Ulrich. ACP-196, an orally bioavailable covalent selective inhibitor of Btk, modulates the innate tumor microenvironment, exhibits antitumor efficacy and enhances gemcitabine activity in pancreatic cancer. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 408. doi:10.1158/1538-7445.AM2015-408


Cytometry Part A | 2013

Single cell network profiling assay in bladder cancer

Todd Covey; Manish Vira; Matt Westfall; Michael Gulrajani; Michelle Cholankeril; Zhamshid Okhunov; Helen R. Levey; Carol Marimpietri; Rachael E. Hawtin; Scott Z. Fields; Alessandra Cesano

The aim of this study was to assess the feasibility of applying the single cell network profiling (SCNP) assay to the examination of signaling networks in epithelial cancer cells, using bladder washings from 29 bladder cancer (BC) and 15 nonbladder cancer (NC) subjects. This report describes the methods we developed to detect rare epithelial cells (within the cells we collected from bladder washings), distinguish cancer cells from normal epithelial cells, and reproducibly quantify signaling within these low frequency cancer cells. Specifically, antibodies against CD45, cytokeratin, EpCAM, and cleaved‐PARP (cPARP) were used to differentiate nonapoptotic epithelial cells from leukocytes, while measurements of DNA content to determine aneuploidy (DAPI stain) allowed for distinction between tumor and normal epithelial cells. Signaling activity in the PI3K and MAPK pathways was assessed by measuring intracellular levels of p‐AKT and p‐ERK at baseline and in response to pathway modulation; 66% (N = 19) of BC samples and 27% (N = 4) of NC samples met the “evaluable” criteria, i.e., at least 400,000 total cells available upon sample receipt with >2% of cells showing an epithelial phenotype. The majority of epithelial cells detected in BC samples were nonapoptotic and all signaling data were generated from identified cPARP negative cells. In four of 19 BC samples but in none of the NC specimens, SCNP assay identified epithelial cancer cells with a quantifiable increase in epidermal growth factor‐induced p‐AKT and p‐ERK levels. Furthermore, preincubation with the PI3K inhibitor GDC‐0941 reduced or completely inhibited basal and epidermal growth factor‐induced p‐AKT but, as expected, had no effect on p‐ERK levels. This study demonstrates the feasibility of applying SCNP assay using multiparametric flow cytometry to the functional characterization of rare, bladder cancer cells collected from bladder washing. Following assay standardization, this method could potentially serve as a tool for disease characterization and drug development in bladder cancer and other solid tumors.

Collaboration


Dive into the Todd Covey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ahmed Hamdy

Hamad Medical Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark D. Minden

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Carsten U. Niemann

Copenhagen University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge