Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Todd D. Taylor is active.

Publication


Featured researches published by Todd D. Taylor.


Nature | 2011

Bifidobacteria can protect from enteropathogenic infection through production of acetate

Shinji Fukuda; Hidehiro Toh; Koji Hase; Kenshiro Oshima; Yumiko Nakanishi; Kazutoshi Yoshimura; Toru Tobe; Julie M. Clarke; David L. Topping; Tohru Suzuki; Todd D. Taylor; Kikuji Itoh; Jun Kikuchi; Hidetoshi Morita; Masahira Hattori; Hiroshi Ohno

The human gut is colonized with a wide variety of microorganisms, including species, such as those belonging to the bacterial genus Bifidobacterium, that have beneficial effects on human physiology and pathology. Among the most distinctive benefits of bifidobacteria are modulation of host defence responses and protection against infectious diseases. Nevertheless, the molecular mechanisms underlying these effects have barely been elucidated. To investigate these mechanisms, we used mice associated with certain bifidobacterial strains and a simplified model of lethal infection with enterohaemorrhagic Escherichia coli O157:H7, together with an integrated ‘omics’ approach. Here we show that genes encoding an ATP-binding-cassette-type carbohydrate transporter present in certain bifidobacteria contribute to protecting mice against death induced by E. coli O157:H7. We found that this effect can be attributed, at least in part, to increased production of acetate and that translocation of the E. coli O157:H7 Shiga toxin from the gut lumen to the blood was inhibited. We propose that acetate produced by protective bifidobacteria improves intestinal defence mediated by epithelial cells and thereby protects the host against lethal infection.


DNA Research | 2009

The human intestinal microbiome: a new frontier of human biology.

Masahira Hattori; Todd D. Taylor

To analyze the vast number and variety of microorganisms inhabiting the human intestine, emerging metagenomic technologies are extremely powerful. The intestinal microbes are taxonomically complex and constitute an ecologically dynamic community (microbiota) that has long been believed to possess a strong impact on human physiology. Furthermore, they are heavily involved in the maturation and proliferation of human intestinal cells, helping to maintain their homeostasis and can be causative of various diseases, such as inflammatory bowel disease and obesity. A simplified animal model system has provided the mechanistic basis for the molecular interactions that occur at the interface between such microbes and host intestinal epithelia. Through metagenomic analysis, it is now possible to comprehensively explore the genetic nature of the intestinal microbiome, the mutually interacting system comprising the host cells and the residing microbial community. The human microbiome project was recently launched as an international collaborative research effort to further promote this newly developing field and to pave the way to a new frontier of human biology, which will provide new strategies for the maintenance of human health.


Nature | 2004

DNA sequence and comparative analysis of chimpanzee chromosome 22

H. Watanabe; Asao Fujiyama; Masahira Hattori; Todd D. Taylor; Atsushi Toyoda; Yoko Kuroki; Hideki Noguchi; Alia BenKahla; Hans Lehrach; Ralf Sudbrak; Michael Kube; S. Taenzer; P. Galgoczy; Matthias Platzer; M. Scharfe; Gabriele Nordsiek; Helmut Blöcker; Ines Hellmann; Philipp Khaitovich; Svante Pääbo; Richard Reinhardt; H.-J. Zheng; Xianglin Zhang; Genfeng Zhu; B.-F. Wang; Gang Fu; Shuangxi Ren; Guoping Zhao; Zhu Chen; Yong Seok Lee

Human–chimpanzee comparative genome research is essential for narrowing down genetic changes involved in the acquisition of unique human features, such as highly developed cognitive functions, bipedalism or the use of complex language. Here, we report the high-quality DNA sequence of 33.3 megabases of chimpanzee chromosome 22. By comparing the whole sequence with the human counterpart, chromosome 21, we found that 1.44% of the chromosome consists of single-base substitutions in addition to nearly 68,000 insertions or deletions. These differences are sufficient to generate changes in most of the proteins. Indeed, 83% of the 231 coding sequences, including functionally important genes, show differences at the amino acid sequence level. Furthermore, we demonstrate different expansion of particular subfamilies of retrotransposons between the lineages, suggesting different impacts of retrotranspositions on human and chimpanzee evolution. The genomic changes after speciation and their biological consequences seem more complex than originally hypothesized.Human–chimpanzee comparative genome research is essential for narrowing down genetic changes involved in the acquisition of unique human features, such as highly developed cognitive functions, bipedalism or the use of complex language. Here, we report the high-quality DNA sequence of 33.3 megabases of chimpanzee chromosome 22. By comparing the whole sequence with the human counterpart, chromosome 21, we found that 1.44% of the chromosome consists of single-base substitutions in addition to nearly 68,000 insertions or deletions. These differences are sufficient to generate changes in most of the proteins. Indeed, 83% of the 231 coding sequences, including functionally important genes, show differences at the amino acid sequence level. Furthermore, we demonstrate different expansion of particular subfamilies of retrotransposons between the lineages, suggesting different impacts of retrotranspositions on human and chimpanzee evolution. The genomic changes after speciation and their biological consequences seem more complex than originally hypothesized.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Complete genome of the uncultured Termite Group 1 bacteria in a single host protist cell

Yuichi Hongoh; Vineet K. Sharma; Tulika Prakash; Satoko Noda; Todd D. Taylor; Toshiaki Kudo; Yoshiyuki Sakaki; Atsushi Toyoda; Masahira Hattori; Moriya Ohkuma

Termites harbor a symbiotic gut microbial community that is responsible for their ability to thrive on recalcitrant plant matter. The community comprises diverse microorganisms, most of which are as yet uncultivable; the detailed symbiotic mechanism remains unclear. Here, we present the first complete genome sequence of a termite gut symbiont—an uncultured bacterium named Rs-D17 belonging to the candidate phylum Termite Group 1 (TG1). TG1 is a dominant group in termite guts, found as intracellular symbionts of various cellulolytic protists, without any physiological information. To acquire the complete genome sequence, we collected Rs-D17 cells from only a single host protist cell to minimize their genomic variation and performed isothermal whole-genome amplification. This strategy enabled us to reconstruct a circular chromosome (1,125,857 bp) encoding 761 putative protein-coding genes. The genome additionally contains 121 pseudogenes assigned to categories, such as cell wall biosynthesis, regulators, transporters, and defense mechanisms. Despite its apparent reductive evolution, the ability to synthesize 15 amino acids and various cofactors is retained, some of these genes having been duplicated. Considering that diverse termite-gut protists harbor TG1 bacteria, we suggest that this bacterial group plays a key role in the gut symbiotic system by stably supplying essential nitrogenous compounds deficient in lignocelluloses to their host protists and the termites. Our results provide a breakthrough to clarify the functions of and the interactions among the individual members of this multilayered symbiotic complex.


Science | 2008

Genome of an Endosymbiont Coupling N2 Fixation to Cellulolysis Within Protist Cells in Termite Gut

Yuichi Hongoh; Vineet K. Sharma; Tulika Prakash; Satoko Noda; Hidehiro Toh; Todd D. Taylor; Toshiaki Kudo; Yoshiyuki Sakaki; Atsushi Toyoda; Masahira Hattori; Moriya Ohkuma

Termites harbor diverse symbiotic gut microorganisms, the majority of which are as yet uncultivable and their interrelationships unclear. Here, we present the complete genome sequence of the uncultured Bacteroidales endosymbiont of the cellulolytic protist Pseudotrichonympha grassii, which accounts for 70% of the bacterial cells in the gut of the termite Coptotermes formosanus. Functional annotation of the chromosome (1,114,206 base pairs) unveiled its ability to fix dinitrogen and recycle putative host nitrogen wastes for biosynthesis of diverse amino acids and cofactors, and import glucose and xylose as energy and carbon sources. Thus, nitrogen fixation and cellulolysis are coupled within the protists cells. This highly evolved symbiotic system probably underlies the ability of the worldwide pest termites Coptotermes to use wood as their sole food.


Nature Genetics | 2006

Comparative analysis of chimpanzee and human y chromosomes unveils complex evolutionary pathway

Yoko Kuroki; Atsushi Toyoda; Hideki Noguchi; Todd D. Taylor; Takehiko Itoh; Dae Soo Kim; Dae-Won Kim; Sang Haeng Choi; Il Chul Kim; Han Ho Choi; Yong Sung Kim; Yoko Satta; Naruya Saitou; Tomoyuki Yamada; Shinichi Morishita; Masahira Hattori; Yoshiyuki Sakaki; Hong Seog Park; Asao Fujiyama

The mammalian Y chromosome has unique characteristics compared with the autosomes or X chromosomes. Here we report the finished sequence of the chimpanzee Y chromosome (PTRY), including 271 kb of the Y-specific pseudoautosomal region 1 and 12.7 Mb of the male-specific region of the Y chromosome. Greater sequence divergence between the human Y chromosome (HSAY) and PTRY (1.78%) than between their respective whole genomes (1.23%) confirmed the accelerated evolutionary rate of the Y chromosome. Each of the 19 PTRY protein-coding genes analyzed had at least one nonsynonymous substitution, and 11 genes had higher nonsynonymous substitution rates than synonymous ones, suggesting relaxation of selective constraint, positive selection or both. We also identified lineage-specific changes, including deletion of a 200-kb fragment from the pericentromeric region of HSAY, expansion of young Alu families in HSAY and accumulation of young L1 elements and long terminal repeat retrotransposons in PTRY. Reconstruction of the common ancestral Y chromosome reflects the dynamic changes in our genomes in the 5–6 million years since speciation.


DNA Research | 2008

Complete genome sequence and comparative analysis of the wild-type commensal escherichia coli strain se11 isolated from a healthy adult

Kenshiro Oshima; Hidehiro Toh; Yoshitoshi Ogura; Hiroyuki Sasamoto; Hidetoshi Morita; Sang Hee Park; Tadasuke Ooka; Sunao Iyoda; Todd D. Taylor; Tetsuya Hayashi; Kikuji Itoh; Masahira Hattori

We sequenced and analyzed the genome of a commensal Escherichia coli (E. coli) strain SE11 (O152:H28) recently isolated from feces of a healthy adult and classified into E. coli phylogenetic group B1. SE11 harbored a 4.8 Mb chromosome encoding 4679 protein-coding genes and six plasmids encoding 323 protein-coding genes. None of the SE11 genes had sequence similarity to known genes encoding phage- and plasmid-borne virulence factors found in pathogenic E. coli strains. The comparative genome analysis with the laboratory strain K-12 MG1655 identified 62 poorly conserved genes between these two non-pathogenic strains and 1186 genes absent in MG1655. These genes in SE11 were mostly encoded in large insertion regions on the chromosome or in the plasmids, and were notably abundant in genes of fimbriae and autotransporters, which are cell surface appendages that largely contribute to the adherence ability of bacteria to host cells and bacterial conjugation. These data suggest that SE11 may have evolved to acquire and accumulate the functions advantageous for stable colonization of intestinal cells, and that the adhesion-associated functions are important for the commensality of E. coli in human gut habitat.


Gut microbes | 2012

Acetate-producing bifidobacteria protect the host from enteropathogenic infection via carbohydrate transporters.

Shinji Fukuda; Hidehiro Toh; Todd D. Taylor; Hiroshi Ohno; Masahira Hattori

The human gut harbors a large and diverse community of commensal bacteria. Among them, Bifidobacterium is known to exhibit various probiotic effects including protection of hosts from infectious diseases. We recently discovered that genes encoding an ATP-binding-cassette-type carbohydrate transporter present in certain bifidobacteria contribute to protecting gnotobiotic mice from death induced by enterohemorrhagic Escherichia coli O157:H7. We elucidated the molecular mechanism on lethal infection in mice associated with several bifidobacterial strains by a multi-omics approach combining genomics, transcriptomics and metabolomics. The combined data clearly show that acetate produced by protective bifidobacteria acts in vivo to promote defense functions of the host epithelial cells and thereby protects the host from lethal infection. As demonstrated here, our multi-omics approach provides a powerful strategy for evaluation of host-microbial interactions in the complex gut ecosystem.


Journal of Bacteriology | 2009

Complete Genome Sequence of the Probiotic Lactobacillus rhamnosus ATCC 53103

Hidetoshi Morita; Hidehiro Toh; Kenshiro Oshima; Masaru Murakami; Todd D. Taylor; Shizunobu Igimi; Masahira Hattori

Lactobacillus rhamnosus is a facultatively heterofermentative lactic acid bacterium and is frequently isolated from human gastrointestinal mucosa of healthy individuals. L. rhamnosus ATCC 53103, isolated from a healthy human intestinal flora, is one of the most widely used and well-documented probiotics. Here, we report the finished and annotated genome sequence of this organism.


PLOS ONE | 2010

Expression of conjoined genes: another mechanism for gene regulation in eukaryotes.

Tulika Prakash; Vineet K. Sharma; Naoki Adati; Ritsuko Ozawa; Naveen Kumar; Yuichiro Nishida; Takayoshi Fujikake; Tadayuki Takeda; Todd D. Taylor

From the ENCODE project, it is realized that almost every base of the entire human genome is transcribed. One class of transcripts resulting from this arises from the conjoined gene, which is formed by combining the exons of two or more distinct (parent) genes lying on the same strand of a chromosome. Only a very limited number of such genes are known, and the definition and terminologies used for them are highly variable in the public databases. In this work, we have computationally identified and manually curated 751 conjoined genes (CGs) in the human genome that are supported by at least one mRNA or EST sequence available in the NCBI database. 353 representative CGs, of which 291 (82%) could be confirmed, were subjected to experimental validation using RT-PCR and sequencing methods. We speculate that these genes are arising out of novel functional requirements and are not merely artifacts of transcription, since more than 70% of them are conserved in other vertebrate genomes. The unique splicing patterns exhibited by CGs reveal their possible roles in protein evolution or gene regulation. Novel CGs, for which no transcript is available, could be identified in 80% of randomly selected potential CG forming regions, indicating that their formation is a routine process. Formation of CGs is not only limited to human, as we have also identified 270 CGs in mouse and 227 in drosophila using our approach. Additionally, we propose a novel mechanism for the formation of CGs. Finally, we developed a database, ConjoinG, which contains detailed information about all the CGs (800 in total) identified in the human genome. In summary, our findings reveal new insights about the functionality of CGs in terms of another possible mechanism for gene regulation and genomic evolution and the mechanism leading to their formation.

Collaboration


Dive into the Todd D. Taylor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshiyuki Sakaki

Toyohashi University of Technology

View shared research outputs
Top Co-Authors

Avatar

Takehiko Itoh

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Asao Fujiyama

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Hideki Noguchi

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge