Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Todd E. Druley is active.

Publication


Featured researches published by Todd E. Druley.


Cellular and Molecular Life Sciences | 2001

From MDR to MXR: new understanding of multidrug resistance systems, their properties and clinical significance

Thomas Litman; Todd E. Druley; Wilfred D. Stein; Susan E. Bates

Abstract: The ATP binding cassette (ABC) superfamily of membrane transporters is one of the largest protein classes known, and counts numerous proteins involved in the trafficking of biological molecules across cell membranes. The first known human ABC transporter was P-glycoprotein (P-gp), which confers multidrug resistance (MDR) to anticancer drugs. In recent years, we have obtained an increased understanding of the mechanism of action of P-gp as its ATPase activity, substrate specificity and pharmacokinetic interactions have been investigated. This review focuses on the functional characterization of P-gp, as well as other ABC transporters involved in MDR: the family of multidrug-resistance-associated proteins (MRP1-7), and the recently discovered ABC half-transporter MXR (also known as BCRP, ABCP and ABCG2). We describe recent progress in the analysis of protein structure-function relationships, and consider the conceptual problem of defining and identifying substrates and inhibitors of MDR. An in-depth discussion follows of how coupling of nucleotide hydrolysis to substrate transport takes place, and we propose a scheme for the mechanism of P-gp function. Finally, the clinical correlations, both for reversal of MDR in cancer and for drug delivery, are discussed.


Nature | 2015

Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia

Terrence N. Wong; Giridharan Ramsingh; Andrew L. Young; Christopher A. Miller; Waseem Touma; John S. Welch; Tamara Lamprecht; Dong Shen; Jasreet Hundal; Robert S. Fulton; Sharon Heath; Jack Baty; Jeffery M. Klco; Li Ding; Elaine R. Mardis; Peter Westervelt; John F. DiPersio; Matthew J. Walter; Timothy A. Graubert; Timothy J. Ley; Todd E. Druley; Daniel C. Link; Richard Wilson

Therapy-related acute myeloid leukaemia (t-AML) and therapy-related myelodysplastic syndrome (t-MDS) are well-recognized complications of cytotoxic chemotherapy and/or radiotherapy. There are several features that distinguish t-AML from de novo AML, including a higher incidence of TP53 mutations, abnormalities of chromosomes 5 or 7, complex cytogenetics and a reduced response to chemotherapy. However, it is not clear how prior exposure to cytotoxic therapy influences leukaemogenesis. In particular, the mechanism by which TP53 mutations are selectively enriched in t-AML/t-MDS is unknown. Here, by sequencing the genomes of 22 patients with t-AML, we show that the total number of somatic single-nucleotide variants and the percentage of chemotherapy-related transversions are similar in t-AML and de novo AML, indicating that previous chemotherapy does not induce genome-wide DNA damage. We identified four cases of t-AML/t-MDS in which the exact TP53 mutation found at diagnosis was also present at low frequencies (0.003–0.7%) in mobilized blood leukocytes or bone marrow 3–6 years before the development of t-AML/t-MDS, including two cases in which the relevant TP53 mutation was detected before any chemotherapy. Moreover, functional TP53 mutations were identified in small populations of peripheral blood cells of healthy chemotherapy-naive elderly individuals. Finally, in mouse bone marrow chimaeras containing both wild-type and Tp53+/− haematopoietic stem/progenitor cells (HSPCs), the Tp53+/− HSPCs preferentially expanded after exposure to chemotherapy. These data suggest that cytotoxic therapy does not directly induce TP53 mutations. Rather, they support a model in which rare HSPCs carrying age-related TP53 mutations are resistant to chemotherapy and expand preferentially after treatment. The early acquisition of TP53 mutations in the founding HSPC clone probably contributes to the frequent cytogenetic abnormalities and poor responses to chemotherapy that are typical of patients with t-AML/t-MDS.


Nature Methods | 2009

Quantification of rare allelic variants from pooled genomic DNA

Todd E. Druley; Francesco Vallania; Daniel J. Wegner; Katherine E. Varley; Olivia L. Knowles; Jacqueline A. Bonds; Sarah W. Robison; Scott W. Doniger; Aaron Hamvas; F. Sessions Cole; Justin C. Fay; Robi D. Mitra

We report a targeted, cost-effective method to quantify rare single-nucleotide polymorphisms from pooled human genomic DNA using second-generation sequencing. We pooled DNA from 1,111 individuals and targeted four genes to identify rare germline variants. Our base-calling algorithm, SNPSeeker, derived from large deviation theory, detected single-nucleotide polymorphisms present at frequencies below the raw error rate of the sequencing platform.


Nature Communications | 2014

Integrated analysis of germline and somatic variants in ovarian cancer

Krishna L. Kanchi; Kimberly J. Johnson; Charles Lu; Michael D. McLellan; Mark D. M. Leiserson; Michael C. Wendl; Qunyuan Zhang; Daniel C. Koboldt; Mingchao Xie; Cyriac Kandoth; Joshua F. McMichael; Matthew A. Wyczalkowski; David E. Larson; Heather K. Schmidt; Christopher A. Miller; Robert S. Fulton; Paul T. Spellman; Elaine R. Mardis; Todd E. Druley; Timothy A. Graubert; Paul J. Goodfellow; Benjamin J. Raphael; Richard Wilson; Li Ding

We report the first large-scale exome-wide analysis of the combined germline-somatic landscape in ovarian cancer. Here we analyze germline and somatic alterations in 429 ovarian carcinoma cases and 557 controls. We identify 3,635 high confidence, rare truncation and 22,953 missense variants with predicted functional impact. We find germline truncation variants and large deletions across Fanconi pathway genes in 20% of cases. Enrichment of rare truncations is shown in BRCA1, BRCA2, and PALB2. Additionally, we observe germline truncation variants in genes not previously associated with ovarian cancer susceptibility (NF1, MAP3K4, CDKN2B, and MLL3). Evidence for loss of heterozygosity was found in 100% and 76% of cases with germline BRCA1 and BRCA2 truncations respectively. Germline-somatic interaction analysis combined with extensive bioinformatics annotation identifies 237 candidate functional germline truncation and missense variants, including 2 pathogenic BRCA1 and 1 TP53 deleterious variants. Finally, integrated analyses of germline and somatic variants identify significantly altered pathways, including the Fanconi, MAPK, and MLL pathways.


American Journal of Human Genetics | 2012

Whole-Exome Capture and Sequencing Identifies HEATR2 Mutation as a Cause of Primary Ciliary Dyskinesia

Amjad Horani; Todd E. Druley; Maimoona A. Zariwala; Anand C. Patel; Benjamin T. Levinson; Laura G. Van Arendonk; Katherine Thornton; Joe C. Giacalone; Alison J. Albee; Kate S. Wilson; Emily H. Turner; Deborah A. Nickerson; Jay Shendure; Philip V. Bayly; Margaret W. Leigh; Steven L. Brody; Susan K. Dutcher; Thomas W. Ferkol

Motile cilia are essential components of the mucociliary escalator and are central to respiratory-tract host defenses. Abnormalities in these evolutionarily conserved organelles cause primary ciliary dyskinesia (PCD). Despite recent strides characterizing the ciliome and sensory ciliopathies through exploration of the phenotype-genotype associations in model organisms, the genetic bases of most cases of PCD remain elusive. We identified nine related subjects with PCD from geographically dispersed Amish communities and performed exome sequencing of two affected individuals and their unaffected parents. A single autosomal-recessive nonsynonymous missense mutation was identified in HEATR2, an uncharacterized gene that belongs to a family not previously associated with ciliary assembly or function. Airway epithelial cells isolated from PCD-affected individuals had markedly reduced HEATR2 levels, absent dynein arms, and loss of ciliary beating. MicroRNA-mediated silencing of the orthologous gene in Chlamydomonas reinhardtii resulted in absent outer dynein arms, reduced flagellar beat frequency, and decreased cell velocity. These findings were recapitulated by small hairpin RNA-mediated knockdown of HEATR2 in airway epithelial cells from unaffected donors. Moreover, immunohistochemistry studies in human airway epithelial cells showed that HEATR2 was localized to the cytoplasm and not in cilia, which suggests a role in either dynein arm transport or assembly. The identification of HEATR2 contributes to the growing number of genes associated with PCD identified in both individuals and model organisms and shows that exome sequencing in family studies facilitates the discovery of novel disease-causing gene mutations.


Human Molecular Genetics | 2010

Myosin binding protein C1: a novel gene for autosomal dominant distal arthrogryposis type 1

Christina A. Gurnett; David M. Desruisseau; Kevin McCall; Ryan Choi; Zachary I. Meyer; Michael Talerico; Sara E. Miller; Jeong-Sun Ju; Alan Pestronk; Anne M. Connolly; Todd E. Druley; Conrad C. Weihl; Mathew B. Dobbs

Distal arthrogryposis type I (DA1) is a disorder characterized by congenital contractures of the hands and feet for which few genes have been identified. Here we describe a five-generation family with DA1 segregating as an autosomal dominant disorder with complete penetrance. Genome-wide linkage analysis using Affymetrix GeneChip Mapping 10K data from 12 affected members of this family revealed a multipoint LOD(max) of 3.27 on chromosome 12q. Sequencing of the slow-twitch skeletal muscle myosin binding protein C1 (MYBPC1), located within the linkage interval, revealed a missense mutation (c.706T>C) that segregated with disease in this family and causes a W236R amino acid substitution. A second MYBPC1 missense mutation was identified (c.2566T>C)(Y856H) in another family with DA1, accounting for an MYBPC1 mutation frequency of 13% (two of 15). Skeletal muscle biopsies from affected patients showed type I (slow-twitch) fibers were smaller than type II fibers. Expression of a green fluorescent protein (GFP)-tagged MYBPC1 construct containing WT and DA1 mutations in mouse skeletal muscle revealed robust sarcomeric localization. In contrast, a more diffuse localization was seen when non-fused GFP and MYBPC1 proteins containing corresponding MYBPC3 amino acid substitutions (R326Q, E334K) that cause hypertrophic cardiomyopathy were expressed. These findings reveal that the MYBPC1 is a novel gene responsible for DA1, though the mechanism of disease may differ from how some cardiac MYBPC3 mutations cause hypertrophic cardiomyopathy.


Genome Research | 2010

High-throughput discovery of rare insertions and deletions in large cohorts

Francesco Vallania; Todd E. Druley; Enrique Ramos; Jue Wang; Ingrid B. Borecki; Michael A. Province; Robi D. Mitra

Pooled-DNA sequencing strategies enable fast, accurate, and cost-effect detection of rare variants, but current approaches are not able to accurately identify short insertions and deletions (indels), despite their pivotal role in genetic disease. Furthermore, the sensitivity and specificity of these methods depend on arbitrary, user-selected significance thresholds, whose optimal values change from experiment to experiment. Here, we present a combined experimental and computational strategy that combines a synthetically engineered DNA library inserted in each run and a new computational approach named SPLINTER that detects and quantifies short indels and substitutions in large pools. SPLINTER integrates information from the synthetic library to select the optimal significance thresholds for every experiment. We show that SPLINTER detects indels (up to 4 bp) and substitutions in large pools with high sensitivity and specificity, accurately quantifies variant frequency (r = 0.999), and compares favorably with existing algorithms for the analysis of pooled sequencing data. We applied our approach to analyze a cohort of 1152 individuals, identifying 48 variants and validating 14 of 14 (100%) predictions by individual genotyping. Thus, our strategy provides a novel and sensitive method that will speed the discovery of novel disease-causing rare variants.


Journal of Clinical Investigation | 2010

Cardiac signaling genes exhibit unexpected sequence diversity in sporadic cardiomyopathy, revealing HSPB7 polymorphisms associated with disease.

Scot J. Matkovich; Derek J. Van Booven; Anna Hindes; Min Young Kang; Todd E. Druley; Francesco Vallania; Robi D. Mitra; Muredach P. Reilly; Thomas P. Cappola; Gerald W. Dorn

Sporadic heart failure is thought to have a genetic component, but the contributing genetic events are poorly defined. Here, we used ultra-high-throughput resequencing of pooled DNAs to identify SNPs in 4 biologically relevant cardiac signaling genes, and then examined the association between allelic variants and incidence of sporadic heart failure in 2 large Caucasian populations. Resequencing of DNA pools, each containing DNA from approximately 100 individuals, was rapid, accurate, and highly sensitive for identifying common and rare SNPs; it also had striking advantages in time and cost efficiencies over individual resequencing using conventional Sanger methods. In 2,606 individuals examined, we identified a total of 129 separate SNPs in the 4 cardiac signaling genes, including 23 nonsynonymous SNPs that we believe to be novel. Comparison of allele frequencies between 625 Caucasian nonaffected controls and 1,117 Caucasian individuals with systolic heart failure revealed 12 SNPs in the cardiovascular heat shock protein gene HSPB7 with greater proportional representation in the systolic heart failure group; all 12 SNPs were confirmed in an independent replication study. These SNPs were found to be in tight linkage disequilibrium, likely reflecting a single genetic event, but none altered amino acid sequence. These results establish the power and applicability of pooled resequencing for comparative SNP association analysis of target subgenomes in large populations and identify an association between multiple HSPB7 polymorphisms and heart failure.


Human Molecular Genetics | 2012

Rare missense variants in CHRNB4 are associated with reduced risk of nicotine dependence

Gabe Haller; Todd E. Druley; Francesco Vallania; Robi D. Mitra; Ping Li; Gustav Akk; Joe Henry Steinbach; Naomi Breslau; Eric O. Johnson; Dorothy K. Hatsukami; Jerry A. Stitzel; Laura J. Bierut; Alison Goate

Genome-wide association studies have identified common variation in the CHRNA5-CHRNA3-CHRNB4 and CHRNA6-CHRNB3 gene clusters that contribute to nicotine dependence. However, the role of rare variation in risk for nicotine dependence in these nicotinic receptor genes has not been studied. We undertook pooled sequencing of the coding regions and flanking sequence of the CHRNA5, CHRNA3, CHRNB4, CHRNA6 and CHRNB3 genes in African American and European American nicotine-dependent smokers and smokers without symptoms of dependence. Carrier status of individuals harboring rare missense variants at conserved sites in each of these genes was then compared in cases and controls to test for an association with nicotine dependence. Missense variants at conserved residues in CHRNB4 are associated with lower risk for nicotine dependence in African Americans and European Americans (AA P = 0.0025, odds-ratio (OR) = 0.31, 95% confidence-interval (CI) = 0.31-0.72; EA P = 0.023, OR = 0.69, 95% CI = 0.50-0.95). Furthermore, these individuals were found to smoke fewer cigarettes per day than non-carriers (AA P = 6.6 × 10(-5), EA P = 0.021). Given the possibility of stochastic differences in rare allele frequencies between groups replication of this association is necessary to confirm these findings. The functional effects of the two CHRNB4 variants contributing most to this association (T375I and T91I) and a missense variant in CHRNA3 (R37H) in strong linkage disequilibrium with T91I were examined in vitro. The minor allele of each polymorphism increased cellular response to nicotine (T375I P = 0.01, T91I P = 0.02, R37H P = 0.003), but the largest effect on in vitro receptor activity was seen in the presence of both CHRNB4 T91I and CHRNA3 R37H (P = 2 × 10(-6)).


Pediatrics | 2012

Single ABCA3 Mutations Increase Risk for Neonatal Respiratory Distress Syndrome

Jennifer A. Wambach; Daniel J. Wegner; Kelcey DePass; Hillary B. Heins; Todd E. Druley; Robi D. Mitra; Ping An; Qunyuan Zhang; Lawrence M. Nogee; F. Sessions Cole; Aaron Hamvas

BACKGROUND AND OBJECTIVE: Neonatal respiratory distress syndrome (RDS) due to pulmonary surfactant deficiency is heritable, but common variants do not fully explain disease heritability. METHODS: Using next-generation, pooled sequencing of race-stratified DNA samples from infants ≥34 weeks’ gestation with and without RDS (n = 513) and from a Missouri population-based cohort (n = 1066), we scanned all exons of 5 surfactant-associated genes and used in silico algorithms to identify functional mutations. We validated each mutation with an independent genotyping platform and compared race-stratified, collapsed frequencies of rare mutations by gene to investigate disease associations and estimate attributable risk. RESULTS: Single ABCA3 mutations were overrepresented among European-descent RDS infants (14.3% of RDS vs 3.7% of non-RDS; P = .002) but were not statistically overrepresented among African-descent RDS infants (4.5% of RDS vs 1.5% of non-RDS; P = .23). In the Missouri population-based cohort, 3.6% of European-descent and 1.5% of African-descent infants carried a single ABCA3 mutation. We found no mutations among the RDS infants and no evidence of contribution to population-based disease burden for SFTPC, CHPT1, LPCAT1, or PCYT1B. CONCLUSIONS: In contrast to lethal neonatal RDS resulting from homozygous or compound heterozygous ABCA3 mutations, single ABCA3 mutations are overrepresented among European-descent infants ≥34 weeks’ gestation with RDS and account for ∼10.9% of the attributable risk among term and late preterm infants. Although ABCA3 mutations are individually rare, they are collectively common among European- and African-descent individuals in the general population.

Collaboration


Dive into the Todd E. Druley's collaboration.

Top Co-Authors

Avatar

Andrew L. Young

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Robi D. Mitra

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Enrique Ramos

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron Hamvas

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Daniel J. Wegner

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Mark Valentine

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Andrew Hughes

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

F. Sessions Cole

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Michael A. Province

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge