Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Todd E. Peterson is active.

Publication


Featured researches published by Todd E. Peterson.


The Journal of Neuroscience | 2008

Novel Selective Allosteric Activator of the M1 Muscarinic Acetylcholine Receptor Regulates Amyloid Processing and Produces Antipsychotic-Like Activity in Rats

Carrie K. Jones; Ashley E. Brady; Albert A. Davis; Zixiu Xiang; Michael Bubser; M. N. Tantawy; Alexander S. Kane; Thomas M. Bridges; J. Phillip Kennedy; Stefania Risso Bradley; Todd E. Peterson; M. Sib Ansari; Ronald M. Baldwin; Robert M. Kessler; Ariel Y. Deutch; James J. Lah; Allan I. Levey; Craig W. Lindsley; P. Jeffrey Conn

Recent studies suggest that subtype-selective activators of M1/M4 muscarinic acetylcholine receptors (mAChRs) may offer a novel approach for the treatment of psychotic symptoms associated with schizophrenia and Alzheimers disease. Previously developed muscarinic agonists have provided clinical data in support of this hypothesis, but failed in clinical development because of a lack of true subtype specificity and adverse effects associated with activation of other mAChR subtypes. We now report characterization of a novel highly selective agonist for the M1 receptor with no agonist activity at any of the other mAChR subtypes, termed TBPB [1-(1′-2-methylbenzyl)-1,4′-bipiperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one]. Mutagenesis and molecular pharmacology studies revealed that TBPB activates M1 through an allosteric site rather than the orthosteric acetylcholine binding site, which is likely critical for its unprecedented selectivity. Whole-cell patch-clamp recordings demonstrated that activation of M1 by TBPB potentiates NMDA receptor currents in hippocampal pyramidal cells but does not alter excitatory or inhibitory synaptic transmission, responses thought to be mediated by M2 and M4. TBPB was efficacious in models predictive of antipsychotic-like activity in rats at doses that did not produce catalepsy or peripheral adverse effects of other mAChR agonists. Finally, TBPB had effects on the processing of the amyloid precursor protein toward the non-amyloidogenic pathway and decreased Aβ production in vitro. Together, these data suggest that selective activation of M1 may provide a novel approach for the treatment of symptoms associated with schizophrenia and Alzheimers disease.


Physics in Medicine and Biology | 2011

SPECT detectors: the Anger Camera and beyond

Todd E. Peterson; Lars R. Furenlid

The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous sodium iodide scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic.


Medical Physics | 2006

SemiSPECT: A small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays

Hyunki Kim; Lars R. Furenlid; Michael J. Crawford; Donald W. Wilson; H. Bradford Barber; Todd E. Peterson; William C. J. Hunter; Zhonglin Liu; Harrison H. Barrett

The first full single-photon emission computed tomography (SPECT) imager to exploit eight compact high-intrinsic-resolution cadmium zinc telluride (CZT) detectors, called SemiSPECT, has been completed. Each detector consists of a CZT crystal and a customized application-specific integrated circuit (ASIC). The CZT crystal is a 2.7 cm x 2.7 cm x -0.2 cm slab with a continuous top electrode and a bottom electrode patterned into a 64 x 64 pixel array by photolithography. The ASIC is attached to the bottom of the CZT crystal by indium-bump bonding. A bias voltage of -180 V is applied to the continuous electrode. The eight detectors are arranged in an octagonal lead-shielded ring. Each pinhole in the eight-pinhole aperture placed at the center of the ring is matched to each individual detector array. An object is imaged onto each detector through a pinhole, and each detector is operated independently with list-mode acquisition. The imaging subject can be rotated about a vertical axis to obtain additional angular projections. The performance of SemiSPECT was characterized using 99mTc. When a 0.5 mm diameter pinhole is used, the spatial resolution on each axis is about 1.4 mm as estimated by the Fourier crosstalk matrix, which provides an algorithm-independent average resolution over the field of view. The energy resolution achieved by summing neighboring pixel signals in a 3 x 3 window is about 10% full-width-at-half-maximum of the photopeak. The overall system sensitivity is about 0.5 x 10(-4) with the energy window of +/-10% from the photopeak. Line-phantom images are presented to visualize the spatial resolution provided by SemiSPECT, and images of bone, myocardium, and human tumor xenografts in mice demonstrate the feasibility of preclinical small-animal studies with SemiSPECT.


Clinical Cancer Research | 2008

Molecular Imaging of Therapeutic Response to Epidermal Growth Factor Receptor Blockade in Colorectal Cancer

H. Charles Manning; Nipun B. Merchant; A. Coe Foutch; John Virostko; Shelby K. Wyatt; Chirayu Shah; Eliot T. McKinley; Jingping Xie; Nathan Mutic; M. Kay Washington; Bonnie LaFleur; M. N. Tantawy; Todd E. Peterson; M. Sib Ansari; Ronald M. Baldwin; Mace L. Rothenberg; Darryl J. Bornhop; John C. Gore; Robert J. Coffey

Purpose: To evaluate noninvasive molecular imaging methods as correlative biomarkers of therapeutic efficacy of cetuximab in human colorectal cancer cell line xenografts grown in athymic nude mice. The correlation between molecular imaging and immunohistochemical analysis to quantify epidermal growth factor (EGF) binding, apoptosis, and proliferation was evaluated in treated and untreated tumor-bearing cohorts. Experimental Design: Optical imaging probes targeting EGF receptor (EGFR) expression (NIR800-EGF) and apoptosis (NIR700-Annexin V) were synthesized and evaluated in vitro and in vivo. Proliferation was assessed by 3′-[18F]fluoro-3′-deoxythymidine ([18F]FLT) positron emission tomography. Assessment of inhibition of EGFR signaling by cetuximab was accomplished by concomitant imaging of NIR800-EGF, NIR700-Annexin V, and [18F]FLT in cetuximab-sensitive (DiFi) and insensitive (HCT-116) human colorectal cancer cell line xenografts. Imaging results were validated by measurement of tumor size and immunohistochemical analysis of total and phosphorylated EGFR, caspase-3, and Ki-67 immediately following in vivo imaging. Results: NIR800-EGF accumulation in tumors reflected relative EGFR expression and EGFR occupancy by cetuximab. NIR700-Annexin V accumulation correlated with cetuximab-induced apoptosis as assessed by immunohistochemical staining of caspase-3. No significant difference in tumor proliferation was noted between treated and untreated animals by [18F]FLT positron emission tomography or Ki-67 immunohistochemistry. Conclusions: Molecular imaging can accurately assess EGF binding, proliferation, and apoptosis in human colorectal cancer xenografts. These imaging approaches may prove useful for serial, noninvasive monitoring of the biological effects of EGFR inhibition in preclinical studies. It is anticipated that these assays can be adapted for clinical use.


Magnetic Resonance Imaging | 2012

Simultaneous PET-MRI in Oncology: A Solution Looking for a Problem?

Thomas E. Yankeelov; Todd E. Peterson; Richard G. Abramson; David Garcia-Izquierdo; Lori R. Arlinghaus; Xia Li; Nkiruka C. Atuegwu; Ciprian Catana; H. Charles Manning; Zahi A. Fayad; John C. Gore

With the recent development of integrated positron emission tomography-magnetic resonance imaging (PET-MRI) scanners, new possibilities for quantitative molecular imaging of cancer are realized. However, the practical advantages and potential clinical benefits of the ability to record PET and MRI data simultaneously must be balanced against the substantial costs and other requirements of such devices. In this review, we highlight several of the key areas where integrated PET-MRI measurements, obtained simultaneously, are anticipated to have a significant impact on clinical and/or research studies. These areas include the use of MR-based motion corrections and/or a priori anatomical information for improved reconstruction of PET data, improved arterial input function characterization for PET kinetic modeling, the use of dual-modality contrast agents, and patient comfort and practical convenience. For widespread acceptance, a compelling case could be made if the combination of quantitative MRI and specific PET biomarkers significantly improves our ability to assess tumor status and response to therapy, and some likely candidates are now emerging. We consider the relative advantages and disadvantages afforded by PET-MRI and summarize current opinions and evidence as to the likely value of PET-MRI in the management of cancer.


Bone | 2011

Longitudinal live animal micro-CT allows for quantitative analysis of tumor-induced bone destruction

Lindsay C. Johnson; Rachelle W. Johnson; Steve Muñoz; Gregory R. Mundy; Todd E. Peterson; Julie A. Sterling

The majority of breast cancer and prostate cancer patients with metastatic disease will go on to develop bone metastases, which contribute largely to the patients morbidity and mortality. Numerous small animal models of cancer metastasis to bone have been developed to study tumor-induced bone destruction, but the advancement of imaging modalities utilized for these models has lagged significantly behind clinical imaging. Therefore, there is a significant need for improvements to live small animal imaging, particularly when obtaining high-resolution images for longitudinal quantitative analyses. Recently, live animal micro-computed tomography (μCT) has gained popularity due to its ability to obtain high-resolution 3-dimensional images. However, the utility of μCT in bone metastasis models has been limited to end-point analyses due to off-target radiation effects on tumor cells. We hypothesized that live animal in vivo μCT can be utilized to perform reproducible and quantitative longitudinal analyses of bone volume in tumor-bearing mice, particularly in a drug treatment model of breast cancer metastasis to bone. To test this hypothesis, we utilized the MDA-MB-231 osteolytic breast cancer model in which the tumor cells are inoculated directly into the tibia of athymic nude mice and imaged mice weekly by Faxitron (radiography), Imtek μCT (in vivo), and Maestro (GFP-imaging). Exvivo μCT and histology were performed at end point for validation. After establishing a high-resolution scanning protocol for the Imtek CT, we determined whether clear, measurable differences in bone volume were detectable in mice undergoing bisphosphonate drug treatments. We found that in vivo μCT could be used to obtain quantifiable and longitudinal images of the progression of bone destruction over time without altering tumor cell growth. In addition, we found that we could detect lesions as early as week 1 and that this approach could be used to monitor the effect of drug treatment on bone. Taken together, these data indicate that in vivo μCT is an effective and reproducible method for longitudinal monitoring of tumor-associated bone destruction in mouse models of tumor-induced bone disease.


The Journal of Nuclear Medicine | 2012

Quantitative Preclinical Imaging of TSPO Expression in Glioma Using N,N-Diethyl-2-(2-(4-(2-18F-Fluoroethoxy)Phenyl)-5,7-Dimethylpyrazolo[1,5-a]Pyrimidin-3-yl)Acetamide

Dewei Tang; Matthew R. Hight; Eliot T. McKinley; Allie Fu; Jason R. Buck; R. Adam Smith; M. N. Tantawy; Todd E. Peterson; Daniel C. Colvin; M. Sib Ansari; Michael L. Nickels; H. Charles Manning

There is a critical need to develop and rigorously validate molecular imaging biomarkers to aid diagnosis and characterization of primary brain tumors. Elevated expression of translocator protein (TSPO) has been shown to predict disease progression and aggressive, invasive behavior in a variety of solid tumors. Thus, noninvasive molecular imaging of TSPO expression could form the basis of a novel, predictive cancer imaging biomarker. In quantitative preclinical PET studies, we evaluated a high-affinity pyrazolopyrimidinyl-based TSPO imaging ligand, N,N-diethyl-2-(2-(4-(2-18F-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide (18F-DPA-714), as a translational probe for quantification of TSPO levels in glioma. Methods: Glioma-bearing rats were imaged with 18F-DPA-714 in a small-animal PET system. Dynamic images were acquired simultaneously on injection of 18F-DPA-714 (130–200 MBq/0.2 mL). Blood was collected to derive the arterial input function (AIF), with high-performance liquid chromatography radiometabolite analysis performed on selected samples for AIF correction. Compartmental modeling was performed using the corrected AIF. Specific tumor cell binding of DPA-714 was evaluated by radioligand displacement of 3H-PK 11195 with DPA-714 in vitro and displacement of 18F-DPA-714 with an excess of DPA-714 in vivo. Immediately after imaging, tumor and healthy brain tissues were harvested for validation by Western blotting and immunohistochemistry. Results: 18F-DPA-714 was found to preferentially accumulate in tumors, with modest uptake in the contralateral brain. Infusion with DPA-714 (10 mg/kg) displaced 18F-DPA-714 binding by greater than 60% on average. Tumor uptake of 18F-DPA-714 was similar to another high-affinity TSPO imaging ligand, 18F-N-fluoroacetyl-N-(2,5-dimethoxybenzyl)-2-phenoxyaniline, and agreed with ex vivo assay of TSPO levels in tumor and healthy brain. Conclusion: These studies illustrate the feasibility of using 18F-DPA-714 for visualization of TSPO-expressing brain tumors. Importantly, 18F-DPA-714 appears suitable for quantitative assay of tumor TSPO levels in vivo. Given the relationship between elevated TSPO levels and poor outcome in oncology, these studies suggest the potential of 18F-DPA-714 PET to serve as a novel predictive cancer imaging modality.


The Journal of Nuclear Medicine | 2011

Quantitative, Preclinical PET of Translocator Protein Expression in Glioma Using 18F-N-Fluoroacetyl-N-(2,5-Dimethoxybenzyl)-2-Phenoxyaniline

Buck; Eliot T. McKinley; Matthew R. Hight; Allie Fu; Dewei Tang; Ralph A. Smith; M. N. Tantawy; Todd E. Peterson; Daniel C. Colvin; Mohammad Sib Ansari; Ronald M. Baldwin; Ping Zhao; Saffet Guleryuz; Manning Hc

Translocator protein (TSPO), also referred to as peripheral benzodiazepine receptor (PBR), is a crucial 18-kDa outer mitochondrial membrane protein involved in numerous cellular functions, including the regulation of cholesterol metabolism, steroidogenesis, and apoptosis. Elevated expression of TSPO in oncology correlates with disease progression and poor survival, suggesting that molecular probes capable of assaying TSPO levels may have potential as cancer imaging biomarkers. In preclinical PET studies, we characterized a high-affinity aryloxyanilide-based TSPO imaging ligand, 18F-N-fluoroacetyl-N-(2,5-dimethoxybenzyl)-2-phenoxyaniline (18F-PBR06), as a candidate probe for the quantitative assessment of TSPO expression in glioma. Methods: Glioma-bearing rats were imaged with 18F-PBR06 in a small-animal PET system. Dynamic images were acquired simultaneously on injection of 18F-PBR06 (70–100 MBq/0.2 mL). Over the course of scanning, arterial blood was collected to derive the input function, with high-performance liquid chromatography radiometabolite analysis performed on selected samples for arterial input function correction. Compartmental modeling of the PET data was performed using the corrected arterial input function. Specific tumor cell binding of PBR06 was evaluated by radioligand displacement of 3H-PK 11195 with PBR06 in vitro and by displacement of 18F-PBR06 with excess PBR06 in vivo. Immediately after imaging, tumor tissue and adjacent healthy brain were harvested for assay of TSPO protein levels by Western blotting and immunohistochemistry. Results: 18F-PBR06 was found to preferentially accumulate in tumors, with modest uptake in the contralateral brain, facilitating excellent contrast between tumor and adjacent tissue. Infusion with PBR06 (10 mg/kg) displaced 18F-PBR06 binding by approximately 75%. The accumulation of 18F-PBR06 in tumor tissues and adjacent brain agreed with the ex vivo assay of TSPO protein levels by Western blotting and quantitative immunohistochemistry. Conclusion: These preclinical studies illustrate that 18F-PBR06 is a promising tracer for visualization of TSPO-expressing tumors. Importantly, the close correlation between 18F-PBR06 uptake and TSPO expression in tumors and normal tissues, coupled with the high degree of displaceable binding from both tumors and the normal brain, represents a significant improvement over other TSPO imaging ligands previously evaluated in glioma. These data suggest the potential of 18F-PBR06 to elucidate the role of TSPO in oncology, as well as its potential development as a cancer imaging biomarker.


The Journal of Nuclear Medicine | 2012

Multifunctional profiling of non-small cell lung cancer using 18F-FDG PET/CT and volume perfusion CT.

M. N. Tantawy; Dewei Tang; Michael L. Nickels; Todd E. Peterson; H. Charles Manning

The aim of this study was to investigate correlations between glucose metabolism registered by 18F-FDG PET/CT and tumor perfusion quantified by volume perfusion CT and immunohistochemical markers Ki67 and microvessel density (MVD) in patients with non–small cell lung cancer (NSCLC). Methods: Between February 2010 and April 2011, 24 consecutive patients (21 women, 3 men; mean age ± SD, 67.6 ± 6.8 y; age range, 55.6–81.3 y) with histologically proven NSCLC (14 adenocarcinoma, 9 squamous cell lung carcinoma [SCC], and 1 mixed adenocarcinoma and SCC) underwent 18F-FDG PET/CT and additional volume perfusion CT. Maximum standardized uptake value (SUVmax), mean SUV, and the metabolic tumor volume were used for 18F-FDG uptake quantification. Blood flow (BF), blood volume (BV), flow extraction product (Ktrans), and standardized perfusion value (SPV) were determined as CT perfusion parameters. Both perfusion parameters and 18F-FDG uptake values were subsequently related to the histologic subtypes, proliferation marker Ki67, MVD according to CD34 staining, and total tumor volume. Results: Mean SUV, SUVmax, and the metabolic tumor volume (mL) were 5.8, 8.7, and 32.3, respectively, in adenocarcinoma and 8.5, 12.9, and 16.8, respectively, in SCC. Mean BF (mL/100 mL/min), mean BV (mL/100 mL), and Ktrans (mL/100 mL/min) were 35.4, 7.3, and 27.8, respectively, in adenocarcinoma and 35.5, 10.0, and 27.8, respectively, in SCC. Moderate correlations were found between the 18F-FDG PET/CT parameters and Ki67 as well as between CT perfusion parameters and MVD but not vice versa. For all tumors, the following correlations were found: between SUVmax and Ki67, r = 0.762 (P = 0.017); between SUVmax and MVD, r = −0.237 (P = 0.359); between mean BF and Ki67, r = −0.127 (P = 0.626); and between mean BF and MVD, r = 0.467 (P = 0.059). Interestingly, correlations between the BF–metabolic relationship and total tumor volume were higher in SCC (r = 0.762, P = 0.017) than in adenocarcinoma (r = −0.0791, P = 0.788). Conclusion: 18F-FDG uptake correlates with Ki67, whereas BF, BV, and Ktrans correlate with MVD. Therefore, 18F-FDG uptake and perfusion parameters provide complementary functional information. An improved tumor profiling will be beneficial for both prognosis and therapy response evaluation in these tumors.


Physics in Medicine and Biology | 2009

Multi-pinhole collimator design for small-object imaging with SiliSPECT: a high-resolution SPECT

Sepideh Shokouhi; S. Metzler; Donald W. Wilson; Todd E. Peterson

We have designed a multi-pinhole collimator for a dual-headed, stationary SPECT system that incorporates high-resolution silicon double-sided strip detectors. The compact camera design of our system enables imaging at source-collimator distances between 20 and 30 mm. Our analytical calculations show that using knife-edge pinholes with small-opening angles or cylindrically shaped pinholes in a focused, multi-pinhole configuration in combination with this camera geometry can generate narrow sensitivity profiles across the field of view that can be useful for imaging small objects at high sensitivity and resolution. The current prototype system uses two collimators each containing 127 cylindrically shaped pinholes that are focused toward a target volume. Our goal is imaging objects such as a mouse brain, which could find potential applications in molecular imaging.

Collaboration


Dive into the Todd E. Peterson's collaboration.

Top Co-Authors

Avatar

M. N. Tantawy

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas E. Yankeelov

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

H. Charles Manning

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge