Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Todd E. Scheetz is active.

Publication


Featured researches published by Todd E. Scheetz.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.

Robert L. Strausberg; Elise A. Feingold; Lynette H. Grouse; Jeffery G. Derge; Richard D. Klausner; Francis S. Collins; Lukas Wagner; Carolyn M. Shenmen; Gregory D. Schuler; Stephen F. Altschul; Barry R. Zeeberg; Kenneth H. Buetow; Carl F. Schaefer; Narayan K. Bhat; Ralph F. Hopkins; Heather Jordan; Troy Moore; Steve I. Max; Jun Wang; Florence Hsieh; Luda Diatchenko; Kate Marusina; Andrew A. Farmer; Gerald M. Rubin; Ling Hong; Mark Stapleton; M. Bento Soares; Maria F. Bonaldo; Tom L. Casavant; Todd E. Scheetz

The National Institutes of Health Mammalian Gene Collection (MGC) Program is a multiinstitutional effort to identify and sequence a cDNA clone containing a complete ORF for each human and mouse gene. ESTs were generated from libraries enriched for full-length cDNAs and analyzed to identify candidate full-ORF clones, which then were sequenced to high accuracy. The MGC has currently sequenced and verified the full ORF for a nonredundant set of >9,000 human and >6,000 mouse genes. Candidate full-ORF clones for an additional 7,800 human and 3,500 mouse genes also have been identified. All MGC sequences and clones are available without restriction through public databases and clone distribution networks (see http://mgc.nci.nih.gov).


Nature | 2012

Clonal selection drives genetic divergence of metastatic medulloblastoma

Xiaochong Wu; Paul A. Northcott; Adrian Dubuc; Adam J. Dupuy; David Shih; Hendrik Witt; Sidney Croul; Eric Bouffet; Daniel W. Fults; Charles G. Eberhart; Livia Garzia; Timothy Van Meter; David Zagzag; Nada Jabado; Jeremy Schwartzentruber; Jacek Majewski; Todd E. Scheetz; Stefan M. Pfister; Andrey Korshunov; Xiao-Nan Li; Stephen W. Scherer; Yoon-Jae Cho; Keiko Akagi; Tobey J. MacDonald; Jan Koster; Martin McCabe; Aaron L. Sarver; V. Peter Collins; William A. Weiss; David A. Largaespada

Medulloblastoma, the most common malignant paediatric brain tumour, arises in the cerebellum and disseminates through the cerebrospinal fluid in the leptomeningeal space to coat the brain and spinal cord. Dissemination, a marker of poor prognosis, is found in up to 40% of children at diagnosis and in most children at the time of recurrence. Affected children therefore are treated with radiation to the entire developing brain and spinal cord, followed by high-dose chemotherapy, with the ensuing deleterious effects on the developing nervous system. The mechanisms of dissemination through the cerebrospinal fluid are poorly studied, and medulloblastoma metastases have been assumed to be biologically similar to the primary tumour. Here we show that in both mouse and human medulloblastoma, the metastases from an individual are extremely similar to each other but are divergent from the matched primary tumour. Clonal genetic events in the metastases can be demonstrated in a restricted subclone of the primary tumour, suggesting that only rare cells within the primary tumour have the ability to metastasize. Failure to account for the bicompartmental nature of metastatic medulloblastoma could be a major barrier to the development of effective targeted therapies.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Comprehensive genetic testing for hereditary hearing loss using massively parallel sequencing

A. Eliot Shearer; Adam P. DeLuca; Michael S. Hildebrand; Kyle R. Taylor; José Gurrola; Steve Scherer; Todd E. Scheetz; Richard J.H. Smith

The extreme genetic heterogeneity of nonsyndromic hearing loss (NSHL) makes genetic diagnosis expensive and time consuming using available methods. To assess the feasibility of target-enrichment and massively parallel sequencing technologies to interrogate all exons of all genes implicated in NSHL, we tested nine patients diagnosed with hearing loss. Solid-phase (NimbleGen) or solution-based (SureSelect) sequence capture, followed by 454 or Illumina sequencing, respectively, were compared. Sequencing reads were mapped using GSMAPPER, BFAST, and BOWTIE, and pathogenic variants were identified using a custom-variant calling and annotation pipeline (ASAP) that incorporates publicly available in silico pathogenicity prediction tools (SIFT, BLOSUM, Polyphen2, and Align-GVGD). Samples included one negative control, three positive controls (one biological replicate), and six unknowns (10 samples total), in which we genotyped 605 single nucleotide polymorphisms (SNPs) by Sanger sequencing to measure sensitivity and specificity for SureSelect-Illumina and NimbleGen-454 methods at saturating sequence coverage. Causative mutations were identified in the positive controls but not in the negative control. In five of six idiopathic hearing loss patients we identified the pathogenic mutation. Massively parallel sequencing technologies provide sensitivity, specificity, and reproducibility at levels sufficient to perform genetic diagnosis of hearing loss.


Developmental Cell | 2008

A BBSome Subunit Links Ciliogenesis, Microtubule Stability, and Acetylation

Alexander V. Loktev; Qihong Zhang; John S. Beck; Charles Searby; Todd E. Scheetz; J. Fernando Bazan; Diane C. Slusarski; Val C. Sheffield; Peter K. Jackson; Maxence V. Nachury

Primary cilium dysfunction affects the development and homeostasis of many organs in Bardet-Biedl syndrome (BBS). We recently showed that seven highly conserved BBS proteins form a stable complex, the BBSome, that functions in membrane trafficking to and inside the primary cilium. We have now discovered a BBSome subunit that we named BBIP10. Similar to other BBSome subunits, BBIP10 localizes to the primary cilium, BBIP10 is present exclusively in ciliated organisms, and depletion of BBIP10 yields characteristic BBS phenotypes in zebrafish. Unexpectedly, BBIP10 is required for cytoplasmic microtubule polymerization and acetylation, two functions not shared with any other BBSome subunits. Strikingly, inhibition of the tubulin deacetylase HDAC6 restores microtubule acetylation in BBIP10-depleted cells, and BBIP10 physically interacts with HDAC6. BBSome-bound BBIP10 may therefore function to couple acetylation of axonemal microtubules and ciliary membrane growth.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Exome sequencing and analysis of induced pluripotent stem cells identify the cilia-related gene male germ cell-associated kinase (MAK) as a cause of retinitis pigmentosa

Budd A. Tucker; Todd E. Scheetz; Robert F. Mullins; Adam P. DeLuca; Jeremy M. Hoffmann; Rebecca M. Johnston; Samuel G. Jacobson; Val C. Sheffield; Edwin M. Stone

Retinitis pigmentosa (RP) is a genetically heterogeneous heritable disease characterized by apoptotic death of photoreceptor cells. We used exome sequencing to identify a homozygous Alu insertion in exon 9 of male germ cell-associated kinase (MAK) as the cause of disease in an isolated individual with RP. Screening of 1,798 unrelated RP patients identified 20 additional probands homozygous for this insertion (1.2%). All 21 affected probands are of Jewish ancestry. MAK encodes a kinase involved in the regulation of photoreceptor-connecting cilium length. Immunohistochemistry of human donor tissue revealed that MAK is expressed in the inner segments, cell bodies, and axons of rod and cone photoreceptors. Several isoforms of MAK that result from alternative splicing were identified. Induced pluripotent stem cells were derived from the skin of the proband and a patient with non-MAK–associated RP (RP control). In the RP control individual, we found that a transcript lacking exon 9 was predominant in undifferentiated cells, whereas a transcript bearing exon 9 and a previously unrecognized exon 12 predominated in cells that were differentiated into retinal precursors. However, in the proband with the Alu insertion, the developmental switch to the MAK transcript bearing exons 9 and 12 did not occur. In addition to showing the use of induced pluripotent stem cells to efficiently evaluate the pathogenicity of specific mutations in relatively inaccessible tissues like retina, this study reveals algorithmic and molecular obstacles to the discovery of pathogenic insertions and suggests specific changes in strategy that can be implemented to more fully harness the power of sequencing technologies.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2011

The air-liquid interface and use of primary cell cultures are important to recapitulate the transcriptional profile of in vivo airway epithelia

Alejandro A. Pezzulo; Timothy D. Starner; Todd E. Scheetz; Geri L. Traver; Ann E. Tilley; Ben-Gary Harvey; Ronald G. Crystal; Paul B. McCray; Joseph Zabner

Organotypic cultures of primary human airway epithelial cells have been used to investigate the morphology, ion and fluid transport, innate immunity, transcytosis, infection, inflammation, signaling, cilia, and repair functions of this complex tissue. However, we do not know how closely these cultures resemble the airway surface epithelium in vivo. In this study, we examined the genome-wide expression profile of tracheal and bronchial human airway epithelia in vivo and compared it with the expression profile of primary cultures of human airway epithelia grown at the air-liquid interface. For comparison, we also investigated the expression profile of Calu-3 cells grown at the air-liquid interface and primary cultures of human airway epithelia submerged in nutrient media. We found that the transcriptional profile of differentiated primary cultures grown at the air-liquid interface most closely resembles that of in vivo airway epithelia, suggesting that the use of primary cultures and the presence of an air-liquid interface are important to recapitulate airway epithelia biology. We describe a high level of similarity between cells of tracheal and bronchial origin within and between different human donors, which suggests a very robust expression profile that is specific to airway cells.


Applied and Environmental Microbiology | 2005

Identifying components of the NF-κB pathway in the beneficial Euprymna scolopes-vibrio fischeri light organ symbiosis

Michael S. Goodson; Mila Kojadinovic; Joshua V. Troll; Todd E. Scheetz; Thomas L. Casavant; M. Bento Soares; Margaret J. McFall-Ngai

ABSTRACT The Toll/NF-κB pathway is a common, evolutionarily conserved innate immune pathway that modulates the responses of animal cells to microbe-associated molecular patterns (MAMPs). Because MAMPs have been implicated as critical elements in the signaling of symbiont-induced development, an expressed sequence tag library from the juvenile light organ of Euprymna scolopes was used to identify members of the Toll/NF-κB pathway. Full-length transcripts were identified by using 5′ and 3′ RACE PCR. Seven transcripts critical for MAMP-induced triggering of the Toll/NF-κB phosphorylation cascade have been identified, including receptors, signal transducers, and a transcription factor. Further investigations should elucidate the role of the Toll/NF-κB pathway in the initiation of the beneficial symbiosis between E. scolopes and Vibrio fischeri.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Regulation of gene expression in the mammalian eye and its relevance to eye disease

Todd E. Scheetz; Kwang-Youn Kim; Ruth E. Swiderski; Alisdair R. Philp; Terry A. Braun; Kevin L. Knudtson; Anne M. Dorrance; Gerald F. DiBona; Jian Huang; Thomas L. Casavant; Val C. Sheffield; Edwin M. Stone

We used expression quantitative trait locus mapping in the laboratory rat (Rattus norvegicus) to gain a broad perspective of gene regulation in the mammalian eye and to identify genetic variation relevant to human eye disease. Of >31,000 gene probes represented on an Affymetrix expression microarray, 18,976 exhibited sufficient signal for reliable analysis and at least 2-fold variation in expression among 120 F2 rats generated from an SR/JrHsd × SHRSP intercross. Genome-wide linkage analysis with 399 genetic markers revealed significant linkage with at least one marker for 1,300 probes (α = 0.001; estimated empirical false discovery rate = 2%). Both contiguous and noncontiguous loci were found to be important in regulating mammalian eye gene expression. We investigated one locus of each type in greater detail and identified putative transcription-altering variations in both cases. We found an inserted cREL binding sequence in the 5′ flanking sequence of the Abca4 gene associated with an increased expression level of that gene, and we found a mutation of the gene encoding thyroid hormone receptor β2 associated with a decreased expression level of the gene encoding short-wavelength sensitive opsin (Opn1sw). In addition to these positional studies, we performed a pairwise analysis of gene expression to identify genes that are regulated in a coordinated manner and used this approach to validate two previously undescribed genes involved in the human disease Bardet–Biedl syndrome. These data and analytical approaches can be used to facilitate the discovery of additional genes and regulatory elements involved in human eye disease.


Cancer Research | 2009

A modified sleeping beauty transposon system that can be used to model a wide variety of human cancers in mice.

Adam J. Dupuy; Laura M. Rogers; Jinsil Kim; Kishore Nannapaneni; Timothy K. Starr; Pentao Liu; David A. Largaespada; Todd E. Scheetz; Nancy A. Jenkins; Neal G. Copeland

Recent advances in cancer therapeutics stress the need for a better understanding of the molecular mechanisms driving tumor formation. This can be accomplished by obtaining a more complete description of the genes that contribute to cancer. We previously described an approach using the Sleeping Beauty (SB) transposon system to model hematopoietic malignancies in mice. Here, we describe modifications of the SB system that provide additional flexibility in generating mouse models of cancer. First, we describe a Cre-inducible SBase allele, RosaSBase(LsL), that allows the restriction of transposon mutagenesis to a specific tissue of interest. This allele was used to generate a model of germinal center B-cell lymphoma by activating SBase expression with an Aid-Cre allele. In a second approach, a novel transposon was generated, T2/Onc3, in which the CMV enhancer/chicken beta-actin promoter drives oncogene expression. When combined with ubiquitous SBase expression, the T2/Onc3 transposon produced nearly 200 independent tumors of more than 20 different types in a cohort of 62 mice. Analysis of transposon insertion sites identified novel candidate genes, including Zmiz1 and Rian, involved in squamous cell carcinoma and hepatocellular carcinoma, respectively. These novel alleles provide additional tools for the SB system and provide some insight into how this mutagenesis system can be manipulated to model cancer in mice.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Transcriptional patterns in both host and bacterium underlie a daily rhythm of anatomical and metabolic change in a beneficial symbiosis.

Andrew M. Wier; Spencer V. Nyholm; Mark J. Mandel; R. Prisca Massengo-Tiassé; Amy L. Schaefer; Irina Koroleva; Sandra Splinter-BonDurant; Bartley Brown; Liliana Manzella; Einat Snir; Hakeem Almabrazi; Todd E. Scheetz; Maria F. Bonaldo; Thomas L. Casavant; M. Bento Soares; John E. Cronan; Jennifer L. Reed; Edward G. Ruby; Margaret J. McFall-Ngai

Mechanisms for controlling symbiont populations are critical for maintaining the associations that exist between a host and its microbial partners. We describe here the transcriptional, metabolic, and ultrastructural characteristics of a diel rhythm that occurs in the symbiosis between the squid Euprymna scolopes and the luminous bacterium Vibrio fischeri. The rhythm is driven by the host’s expulsion from its light-emitting organ of most of the symbiont population each day at dawn. The transcriptomes of both the host epithelium that supports the symbionts and the symbiont population itself were characterized and compared at four times over this daily cycle. The greatest fluctuation in gene expression of both partners occurred as the day began. Most notable was an up-regulation in the host of >50 cytoskeleton-related genes just before dawn and their subsequent down-regulation within 6 h. Examination of the epithelium by TEM revealed a corresponding restructuring, characterized by effacement and blebbing of its apical surface. After the dawn expulsion, the epithelium reestablished its polarity, and the residual symbionts began growing, repopulating the light organ. Analysis of the symbiont transcriptome suggested that the bacteria respond to the effacement by up-regulating genes associated with anaerobic respiration of glycerol; supporting this finding, lipid analysis of the symbionts’ membranes indicated a direct incorporation of host-derived fatty acids. After 12 h, the metabolic signature of the symbiont population shifted to one characteristic of chitin fermentation, which continued until the following dawn. Thus, the persistent maintenance of the squid–vibrio symbiosis is tied to a dynamic diel rhythm that involves both partners.

Collaboration


Dive into the Todd E. Scheetz's collaboration.

Researchain Logo
Decentralizing Knowledge