Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Todd G. Mainprize is active.

Publication


Featured researches published by Todd G. Mainprize.


Nature Genetics | 2002

Mutations in SUFU predispose to medulloblastoma

Michael D. Taylor; Ling Liu; Corey Raffel; Chi-chung Hui; Todd G. Mainprize; Xiaoyun Zhang; Ron Agatep; Sharon Chiappa; Luzhang Gao; Anja Lowrance; Aihau Hao; Alisa M. Goldstein; Theodora Stavrou; Stephen W. Scherer; Wieslaw T. Dura; Brandon J. Wainwright; Jeremy A. Squire; James T. Rutka; David Hogg

The sonic hedgehog (SHH) signaling pathway directs the embryonic development of diverse organisms and is disrupted in a variety of malignancies. Pathway activation is triggered by binding of hedgehog proteins to the multipass Patched-1 (PTCH) receptor, which in the absence of hedgehog suppresses the activity of the seven-pass membrane protein Smoothened (SMOH). De-repression of SMOH culminates in the activation of one or more of the GLI transcription factors that regulate the transcription of downstream targets. Individuals with germline mutations of the SHH receptor gene PTCH are at high risk of developmental anomalies and of basal-cell carcinomas, medulloblastomas and other cancers (a pattern consistent with nevoid basal-cell carcinoma syndrome, NBCCS). In keeping with the role of PTCH as a tumor-suppressor gene, somatic mutations of this gene occur in sporadic basal-cell carcinomas and medulloblastomas. We report here that a subset of children with medulloblastoma carry germline and somatic mutations in SUFU (encoding the human suppressor of fused) of the SHH pathway, accompanied by loss of heterozygosity of the wildtype allele. Several of these mutations encode truncated proteins that are unable to export the GLI transcription factor from nucleus to cytoplasm, resulting in the activation of SHH signaling. SUFU is a newly identified tumor-suppressor gene that predisposes individuals to medulloblastoma by modulating the SHH signaling pathway through a newly identified mechanism.


Annals of Surgery | 2014

A systematic review of the effects of resident duty hour restrictions in surgery: impact on resident wellness, training, and patient outcomes.

Najma Ahmed; Katharine S. Devitt; Itay Keshet; Jonathan Spicer; Kevin Imrie; Liane S. Feldman; Jonathan Cools-Lartigue; Ahmed Kayssi; Nir Lipsman; Maryam Elmi; Abhaya V. Kulkarni; Chris Parshuram; Todd G. Mainprize; Richard Warren; Paola Fata; M. Sean Gorman; Stan Feinberg; James T. Rutka

Background:In 2003, the Accreditation Council for Graduate Medical Education (ACGME) mandated 80-hour resident duty limits. In 2011 the ACGME mandated 16-hour duty maximums for PGY1 (post graduate year) residents. The stated goals were to improve patient safety, resident well-being, and education. A systematic review and meta-analysis were performed to evaluate the impact of resident duty hours (RDH) on clinical and educational outcomes in surgery. Methods:A systematic review (1980–2013) was executed on CINAHL, Cochrane Database, Embase, Medline, and Scopus. Quality of articles was assessed using the GRADE guidelines. Sixteen-hour shifts and night float systems were analyzed separately. Articles that examined mortality data were combined in a random-effects meta-analysis to evaluate the impact of RDH on patient mortality. Results:A total of 135 articles met the inclusion criteria. Among these, 42% (N = 57) were considered moderate-high quality. There was no overall improvement in patient outcomes as a result of RDH; however, some studies suggest increased complication rates in high-acuity patients. There was no improvement in education related to RDH restrictions, and performance on certification examinations has declined in some specialties. Survey studies revealed a perception of worsened education and patient safety. There were improvements in resident wellness after the 80-hour workweek, but there was little improvement or negative effects on wellness after 16-hour duty maximums were implemented. Conclusions:Recent RDH changes are not consistently associated with improvements in resident well-being, and have negative impacts on patient outcomes and performance on certification examinations. Greater flexibility to accommodate resident training needs is required. Further erosion of training time should be considered with great caution.


Oncogene | 2004

Identification of differentially expressed and developmentally regulated genes in medulloblastoma using suppression subtraction hybridization

Naoki Yokota; Todd G. Mainprize; Michael D. Taylor; Tomohiko Kohata; Michael P. Loreto; Shigeo Ueda; Wieslaw T. Dura; Wiesia Grajkowska; John S. Kuo; James T. Rutka

To increase our understanding of the molecular pathogenesis of medulloblastoma (MB), we utilized the technique of suppression subtractive hybridization (SSH) to identify genes that are dysregulated in MB when compared to cerebellum. SSH-enriched cDNA libraries from both human and Ptch+/− heterozygous murine MBs were generated by subtracting common cDNAs from corresponding non-neoplastic cerebellum. For the human classic MB library, total human cerebellar RNA was used as control tissue; for the Ptch+/− heterozygous MB, non-neoplastic cerebellum from an unaffected Ptch+/− littermate was used as the control. Through differential screening of these libraries, over 100 upregulated tumor cDNA fragments were isolated, sequenced and identified with the NCBI BLAST program. From these, we selected genes involved in cellular proliferation, antiapoptosis, and cerebellar differentiation for further analysis. Upregulated genes identified in the human MB library included Unc33-like protein (ULIP), SOX4, Neuronatin (NNAT), the mammalian homologue of Drosophila BarH-like 1(BARHL1), the nuclear matix protein NRP/B (ENC1), and the homeobox OTX2 gene. Genes found to be upregulated in the murine MB library included cyclin D2 (Ccnd2), thymopoietin (Tmpo), Musashi-1 (Msh1), protein phosphatase 2A inhibitor-2 (I-2pp2a), and Unc5h4(D). Using semiquantitative reverse transcription–polymerase chain reaction (RT–PCR), the mRNA expression levels for these genes were markedly higher in human MBs than in cerebellum. Western blot analysis was used to further confirm the overexpression of a subset of these genes at the protein level. Notch pathway overactivity was demonstrated in the TE671 MB cell line expressing high levels of MSH1 through HES1-Luciferase transfections. This study has revealed a panel of developmentally regulated genes that may be involved in the pathogenesis of MB.


American Journal of Human Genetics | 2000

Familial Posterior Fossa Brain Tumors of Infancy Secondary to Germline Mutation of the hSNF5 Gene

Michael D. Taylor; Nalan Gokgoz; Irene L. Andrulis; Todd G. Mainprize; James M. Drake; James T. Rutka

We have identified a family afflicted over multiple generations with posterior fossa tumors of infancy, including central nervous system (CNS) malignant rhabdoid tumor (a subset of primitive neuroectodermal tumors, or PNET) and choroid plexus carcinoma. Various hereditary tumor syndromes, including Li-Fraumeni syndrome, Gorlin syndrome, and Turcot syndrome, have been linked to increased risk of developing CNS PNETs and choroid plexus tumors. Malignant rhabdoid tumors of the CNS and kidney show loss of heterozygosity at chromosome 22q11. The hSNF5 gene on chromosome 22q11 has recently been identified as a candidate tumor-suppressor gene in sporadic CNS and renal malignant rhabdoid tumors. We describe a family in which both affected and some unaffected family members were found to have a germline splice-site mutation of the hSNF5 gene, leading to exclusion of exon 7 from the mature cDNA and a subsequent frameshift. Tumor tissue shows loss of the wild-type hSNF5 allele, in keeping with a tumor-suppressor gene. These findings suggest that germline mutations in hSNF5 are associated with a novel autosomal dominant syndrome with incomplete penetrance that predisposes to malignant posterior fossa brain tumors in infancy.


Journal of Neuro-oncology | 2001

Hyaluronate receptors mediating glioma cell migration and proliferation.

Yasuhiko Akiyama; Shin Jung; Bodour Salhia; Sangpyung Lee; Sherri-Lynn Hubbard; Michael D. Taylor; Todd G. Mainprize; Kotaro Akaishi; Wouter R. van Furth; James T. Rutka

The extracellular matrix (ECM) of the central nervous system (CNS) is enriched in hyaluronate (HA). Ubiquitous receptors for HA are CD44 and the Receptor for HA-Mediated Motility known as RHAMM. In the present study, we have investigated the potential role of CD44 and RHAMM in the migration and proliferation of human astrocytoma cells. HA-receptor expression in brain tumor cell lines and surgical specimens was determined by immunocytochemistry and western blot analyses. The ability of RHAMM to bind ligand was determined through cetylpyridinium chloride (CPC) precipitations of brain tumor lysates in HA-binding assays. The effects of HA, CD44 blocking antibodies, and RHAMM soluble peptide on astrocytoma cell growth and migration was determined using MTT and migration assays. Our results show that the expression of the HA-receptors, CD44, and RHAMM, is virtually ubiquitous amongst glioma cell lines, and glioma tumor specimens. There was a gradient of expression amongst gliomas with high grade gliomas expressing more RHAMM and CD44 than did lower grade lesions or did normal human astrocytes or non-neoplastic specimens of human brain. Specific RHAMM variants of 85- and 58-kDa size were shown to bind avidly to HA following CPC precipitations. RHAMM soluble peptide inhibited glioma cell line proliferation in a dose-dependent fashion. Finally, while anti-CD44 antibodies did not inhibit the migration of human glioma cells, soluble peptides directed at the HA-binding domain of RHAMM inhibited glioma migration both on and off an HA-based ECM. These data support the notion that HA-receptors contribute to brain tumor adhesion, proliferation, and migration, biological features which must be better understood before more effective treatment strategies for these tumors can be found.


Neurosurgery | 2000

Molecular insight into medulloblastoma and central nervous system primitive neuroectodermal tumor biology from hereditary syndromes: a review.

Taylor; Todd G. Mainprize; James T. Rutka

THROUGH THE STUDY of uncommon familial syndromes, physicians and scientists have been able to illuminate the underlying mechanisms of some of the more common sporadic diseases; this is illustrated best by studies of familial retinoblastoma. A number of rare familial syndromes have been described in which affected individuals are at increased risk of developing medulloblastoma and/or supratentorial primitive neuroectodermal tumors. The descriptions of many of these syndromes are based on patients observed by clinicians in their clinical practice. Determination of the underlying genetic defects in these patients with uncommon syndromes has led to identification of a number of genes subsequently found to be mutated in sporadic medulloblastomas (tumor suppressor genes). Associated genes in the same signaling pathways have also been found to be abnormal in sporadic medulloblastoma. Identification of patients with these rare syndromes is important, as they are often at increased risk for additional neoplasms, as are family members and future children. We review the published literature describing hereditary syndromes that have been associated with an increased incidence of medulloblastoma and/or central nervous system primitive neuroectodermal tumor. Review of the underlying molecular abnormalities in comparison to changes found in sporadic neoplasms suggests pathways important for tumorigenesis.


Journal of Neurotrauma | 2013

Intracranial pressure monitoring in severe traumatic brain injury: results from the American College of Surgeons Trauma Quality Improvement Program.

Aziz S. Alali; Robert Fowler; Todd G. Mainprize; Damon C. Scales; Alexander Kiss; Charles de Mestral; Joel G. Ray; Avery B. Nathens

Although existing guidelines support the utilization of intracranial pressure (ICP) monitoring in patients with traumatic brain injury (TBI), the evidence suggesting benefit is limited. To evaluate the impact on outcome, we determined the relationship between ICP monitoring and mortality in centers participating in the American College of Surgeons Trauma Quality Improvement Program (TQIP). Data on 10,628 adults with severe TBI were derived from 155 TQIP centers over 2009-2011. Random-intercept multilevel modeling was used to evaluate the association between ICP monitoring and mortality after adjusting for important confounders. We evaluated this relationship at the patient level and at the institutional level. Overall mortality (n=3769) was 35%. Only 1874 (17.6%) patients underwent ICP monitoring, with a mortality of 32%. The adjusted odds ratio (OR) for mortality was 0.44 [95% confidence interval (CI), 0.31-0.63], when comparing patients with ICP monitoring to those without. It is plausible that patients receiving ICP monitoring were selected because of an anticipated favorable outcome. To overcome this limitation, we stratified hospitals into quartiles based on ICP monitoring utilization. Hospitals with higher rates of ICP monitoring use were associated with lower mortality: The adjusted OR of death was 0.52 (95% CI, 0.35-0.78) in the quartile of hospitals with highest use, compared to the lowest. ICP monitoring utilization rates explained only 9.9% of variation in mortality across centers. Results were comparable irrespective of the method of case-mix adjustment. In this observational study, ICP monitoring utilization was associated with lower mortality. However, variability in ICP monitoring rates contributed only modestly to variability in institutional mortality rates. Identifying other institutional practices that impact on mortality is an important area for future research.


Oncogene | 2004

Failure of a medulloblastoma-derived mutant of SUFU to suppress WNT signaling

Michael D. Taylor; Xiaoyun Zhang; Ling Liu; Chi-chung Hui; Todd G. Mainprize; Stephen W. Scherer; Brandon J. Wainwright; David Hogg; James T. Rutka

Germline mutations of APC in patients with Turcot syndrome (colon cancer and medulloblastoma), was well as somatic mutations of APC, β-catenin, and Axin in sporadic medulloblastomas (MBs) have shown the importance of WNT signaling in the pathogenesis of MB. A subset of children with MB have germline mutations of SUFU, a known inhibitor of Hedgehog signal transduction. A recent report suggested that murine Sufu can bind β-catenin, export it from the nucleus, and thereby repress β-catenin/T-cell factor (Tcf)-mediated transcription. We show that an MB-derived mutant of SUFU has lost the ability to decrease nuclear levels of β-catenin, and cannot inhibit β-catenin/Tcf-mediated transcription as compared to wild type SUFU. Our results suggest that loss of function of SUFU results in overactivity of both the Sonic Hedgehog, and the WNT signaling pathways, leading to excessive proliferation and failure to differentiate resulting in MB.


Neurosurgical Focus | 2012

Focused ultrasound disruption of the blood-brain barrier: a new frontier for therapeutic delivery in molecular neurooncology

Arnold B. Etame; Roberto J. Diaz; Christian A. Smith; Todd G. Mainprize; Kullervo Hynynen; James T. Rutka

Recent advances in molecular neurooncology provide unique opportunities for targeted molecular-based therapies. However, the blood-brain barrier (BBB) remains a major limitation to the delivery of tumor-specific therapies directed against aberrant signaling pathways in brain tumors. Given the dismal prognosis of patients with malignant brain tumors, novel strategies that overcome the intrinsic limitations of the BBB are therefore highly desirable. Focused ultrasound BBB disruption is emerging as a novel strategy for enhanced delivery of therapeutic agents into the brain via focal, reversible, and safe BBB disruption. This review examines the potential role and implications of focused ultrasound in molecular neurooncology.


Nanomedicine: Nanotechnology, Biology and Medicine | 2012

Enhanced delivery of gold nanoparticles with therapeutic potential into the brain using MRI-guided focused ultrasound

Arnold B. Etame; Roberto J. Diaz; Meaghan A. O'Reilly; Christian A. Smith; Todd G. Mainprize; Kullervo Hynynen; James T. Rutka

UNLABELLED The blood brain barrier (BBB) is a major impediment to the delivery of therapeutics into the central nervous system (CNS). Gold nanoparticles (AuNPs) have been successfully employed in multiple potential therapeutic and diagnostic applications outside the CNS. However, AuNPs have very limited biodistribution within the CNS following intravenous administration. Magnetic resonance imaging guided focused ultrasound (MRgFUS) is a novel technique that can transiently increase BBB permeability allowing delivery of therapeutics into the CNS. MRgFUS has not been previously employed for delivery of AuNPs into the CNS. This work represents the first demonstration of focal enhanced delivery of AuNPs into the CNS using MRgFUS in a rat model both safely and effectively. Histologic visualization and analytical quantification of AuNPs within the brain parenchyma suggest BBB transgression. These results suggest a role for MRgFUS in the delivery of AuNPs with therapeutic potential into the CNS for targeting neurological diseases. FROM THE CLINICAL EDITOR Gold nanoparticles have been successfully utilized in experimental diagnostic and therapeutic applications; however, the blood-brain barrier (BBB) is not permeable to these particles. In this paper, the authors demonstrated that MRI guided focused ultrasound is capable to transiently open the BBB thereby enabling CNS access.

Collaboration


Dive into the Todd G. Mainprize's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicolas Phan

Sunnybrook Health Sciences Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victor X. D. Yang

Sunnybrook Health Sciences Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arjun Sahgal

Sunnybrook Health Sciences Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge