Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Todd J. Herron is active.

Publication


Featured researches published by Todd J. Herron.


Circulation Research | 2012

Extracellular Matrix Promotes Highly Efficient Cardiac Differentiation of Human Pluripotent Stem Cells: The Matrix Sandwich Method

Jianhua Zhang; Matthew Klos; Gisela F. Wilson; Amanda M. Herman; Xiaojun Lian; Kunil K. Raval; Matthew R. Barron; Luqia Hou; Andrew G. Soerens; Junying Yu; Sean P. Palecek; Gary E. Lyons; James A. Thomson; Todd J. Herron; José Jalife; Timothy J. Kamp

Rationale: Cardiomyocytes (CMs) differentiated from human pluripotent stem cells (PSCs) are increasingly being used for cardiovascular research, including disease modeling, and hold promise for clinical applications. Current cardiac differentiation protocols exhibit variable success across different PSC lines and are primarily based on the application of growth factors. However, extracellular matrix is also fundamentally involved in cardiac development from the earliest morphogenetic events, such as gastrulation. Objective: We sought to develop a more effective protocol for cardiac differentiation of human PSCs by using extracellular matrix in combination with growth factors known to promote cardiogenesis. Methods and Results: PSCs were cultured as monolayers on Matrigel, an extracellular matrix preparation, and subsequently overlayed with Matrigel. The matrix sandwich promoted an epithelial-to-mesenchymal transition as in gastrulation with the generation of N-cadherin-positive mesenchymal cells. Combining the matrix sandwich with sequential application of growth factors (Activin A, bone morphogenetic protein 4, and basic fibroblast growth factor) generated CMs with high purity (up to 98%) and yield (up to 11 CMs/input PSC) from multiple PSC lines. The resulting CMs progressively matured over 30 days in culture based on myofilament expression pattern and mitotic activity. Action potentials typical of embryonic nodal, atrial, and ventricular CMs were observed, and monolayers of electrically coupled CMs modeled cardiac tissue and basic arrhythmia mechanisms. Conclusions: Dynamic extracellular matrix application promoted epithelial–mesenchymal transition of human PSCs and complemented growth factor signaling to enable robust cardiac differentiation.


Circulation Research | 2012

Optical Imaging of Voltage and Calcium in Cardiac Cells & Tissues

Todd J. Herron; Peter D. Lee; José Jalife

Cardiac optical mapping has proven to be a powerful technology for studying cardiovascular function and disease. The development and scientific impact of this methodology are well-documented. Because of its relevance in cardiac research, this imaging technology advances at a rapid pace. Here, we review technological and scientific developments during the past several years and look toward the future. First, we explore key components of a modern optical mapping set-up, focusing on: (1) new camera technologies; (2) powerful light-emitting-diodes (from ultraviolet to red) for illumination; (3) improved optical filter technology; (4) new synthetic and optogenetic fluorescent probes; (5) optical mapping with motion and contraction; (6) new multiparametric optical mapping techniques; and (7) photon scattering effects in thick tissue preparations. We then look at recent optical mapping studies in single cells, cardiomyocyte monolayers, atria, and whole hearts. Finally, we briefly look into the possible future roles of optical mapping in the development of regenerative cardiac research, cardiac cell therapies, and molecular genetic advances.


Circulation Research | 2012

Simultaneous Voltage and Calcium Mapping of Genetically Purified Human Induced Pluripotent Stem Cell–Derived Cardiac Myocyte Monolayers

Peter D. Lee; Matt Klos; Christian Bollensdorff; Luqia Hou; Paul Ewart; Timothy J. Kamp; Jianhua Zhang; Alexandra Bizy; Guadalupe Guerrero-Serna; Peter Kohl; José Jalife; Todd J. Herron

Rationale: Human induced pluripotent stem cell–derived cardiomyocytes (iPSC-CMs) offer a powerful in vitro tool to investigate disease mechanisms and to perform patient-specific drug screening. To date, electrophysiological analysis of iPSC-CMs has been limited to single-cell recordings or low-resolution microelectrode array mapping of small cardiomyocyte aggregates. New methods of generating and optically mapping impulse propagation of large human iPSC-CM cardiac monolayers are needed. Objective: Our first aim was to develop an imaging platform with versatility for multiparameter electrophysiological mapping of cardiac preparations, including human iPSC-CM monolayers. Our second aim was to create large electrically coupled human iPSC-CM monolayers for simultaneous action potential and calcium wave propagation measurements. Methods and Results: A fluorescence imaging platform based on electronically controlled light-emitting diode illumination, a multiband emission filter, and single camera sensor was developed and utilized to monitor simultaneously action potential and intracellular calcium wave propagation in cardiac preparations. Multiple, large-diameter (≥1 cm), electrically coupled human cardiac monolayers were then generated that propagated action potentials and calcium waves at velocities similar to those commonly observed in rodent cardiac monolayers. Conclusions: The multiparametric imaging system presented here offers a scalable enabling technology to measure simultaneously action potential and intracellular calcium wave amplitude and dynamics of cardiac monolayers. The advent of large-scale production of human iPSC-CMs makes it possible to now generate sufficient numbers of uniform cardiac monolayers that can be utilized for the study of arrhythmia mechanisms and offers advantages over commonly used rodent models.


Circulation Research | 2006

Activation of Myocardial Contraction by the N-Terminal Domains of Myosin Binding Protein-C

Todd J. Herron; Elena Rostkova; Gudrun Kunst; Rajiv Chaturvedi; Mathias Gautel; Jonathan C. Kentish

Myosin binding protein-C (MyBP-C) is a poorly understood component of the thick filament in striated muscle sarcomeres. Its C terminus binds tightly to myosin, whereas the N terminus contains binding sites for myosin S2 and possibly for the thin filament. To study the role of the N-terminal domains of cardiac MyBP-C (cMyBP-C), we added human N-terminal peptide fragments to human and rodent skinned ventricular myocytes. At concentrations >10 &mgr;mol/L, the N-terminal C0C2 peptide activated force production in the absence of calcium (pCa 9). Force at the optimal concentration (80 &mgr;mol/L) of C0C2 was ≈60% of that in maximal Ca2+ (pCa 4.5), but the rate constant of tension redevelopment (ktr) matched or exceeded (by up to 80%) that produced by Ca2+ alone. Experiments using different N-terminal peptides suggested that this activating effect of C0C2 resulted from binding by the pro/ala-rich C0-C1 linker region, rather than the terminal C0 domain. At a lower concentration (1 &mgr;mol/L), exogenous C0C2 strongly sensitized cardiac myofibrils to Ca2+ at a sarcomere length (SL) of 1.9 &mgr;m but had no significant effect at SL 2.3 &mgr;m. This differential effect caused the normal SL dependence of myofibrillar Ca2+ sensitivity to be reduced by 80% (mouse myocytes) or abolished (human myocytes) in 1 &mgr;mol/L C0C2. These results suggest that cMyBP-C provides a regulatory pathway by which the thick filament can influence the activation of the thin filament, separately from its regulation by Ca2+. Furthermore, the N-terminal region of cMyBP-C can influence the SL-tension (Frank–Starling) relationship in cardiac muscle.


Journal of Clinical Investigation | 2011

Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes

Adam B. Stein; Thomas A. Jones; Todd J. Herron; Sanjeevkumar R. Patel; Sharlene M. Day; Sami F. Noujaim; Michelle L. Milstein; Matthew Klos; Philip B. Furspan; José Jalife; Gregory R. Dressler

Histone H3 lysine 4 (H3K4me) methyltransferases and their cofactors are essential for embryonic development and the establishment of gene expression patterns in a cell-specific and heritable manner. However, the importance of such epigenetic marks in maintaining gene expression in adults and in initiating human disease is unclear. Here, we addressed this question using a mouse model in which we could inducibly ablate PAX interacting (with transcription-activation domain) protein 1 (PTIP), a key component of the H3K4me complex, in cardiac cells. Reducing H3K4me3 marks in differentiated cardiomyocytes was sufficient to alter gene expression profiles. One gene regulated by H3K4me3 was Kv channel-interacting protein 2 (Kcnip2), which regulates a cardiac repolarization current that is downregulated in heart failure and functions in arrhythmogenesis. This regulation led to a decreased sodium current and action potential upstroke velocity and significantly prolonged action potential duration (APD). The prolonged APD augmented intracellular calcium and in vivo systolic heart function. Treatment with isoproterenol and caffeine in this mouse model resulted in the generation of premature ventricular beats, a harbinger of lethal ventricular arrhythmias. These results suggest that the maintenance of H3K4me3 marks is necessary for the stability of a transcriptional program in differentiated cells and point to an essential function for H3K4me3 epigenetic marks in cellular homeostasis.


Heart Rhythm | 2010

Purkinje cell calcium dysregulation is the cellular mechanism that underlies catecholaminergic polymorphic ventricular tachycardia

Todd J. Herron; Michelle L. Milstein; Justus Anumonwo; Silvia G. Priori; José Jalife

BACKGROUND Inherited arrhythmias can be caused by mutations in the cardiac ryanodine receptor (RyR2). The cellular source of these arrhythmias is unknown. Isolated RyR2(R4496C) mouse ventricular myocytes display arrhythmogenic activity related to spontaneous Ca(2+) release during diastole. On the other hand, recent whole-heart epicardial and endocardial optical mapping data demonstrate that ventricular arrhythmias in the RyR2(R4496C) mouse model of catecholaminergic polymorphic ventricular tachycardia (CPVT) originate in the His-Purkinje system, suggesting that Purkinje cells, and not ventricular myocytes, may be the cellular source of arrhythmogenic activity. The relative effect of the RyR2(R4496C) mutation on calcium homeostasis in ventricular myocytes versus Purkinje cells is unknown. OBJECTIVE This study sought to determine which cardiac cell type is more severely affected, in terms of calcium handling, by expression of the RyR2(R4496C) mutant channel: the ventricular myocytes or the Purkinje cells. METHODS AND RESULTS To discriminate Purkinje cells from ventricular myocytes, we crossed the RyR2(R4496C) mouse model of CPVT with the Cx40(EGFP/+) transgenic mouse. This genetic cross yields Purkinje cells that express eGFP, and therefore fluoresce green when excited by the appropriate wavelength; ventricular myocytes, which do not express connexin 40, are not green. Intracellular calcium was measured in each cell type using calcium-sensitive probes. Purkinje cells of the RyR2(R4496C) mouse model of CPVT show an approximately 2x greater rate (P < .05) and approximately 2x to 3x greater amplitude (P < .000001) of spontaneous calcium release events than ventricular myocytes isolated from the same heart. CONCLUSION These results demonstrate that focally activated arrhythmias originate in the specialized electrical conducting cells of the His-Purkinje system in the RyR2(R4496C) mouse model of CPVT.


Stem Cell Research | 2013

Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes

Alexandra Bizy; Guadalupe Guerrero-Serna; Bin Hu; Daniela Ponce-Balbuena; B. Cicero Willis; Manuel Zarzoso; Rafael J. Ramirez; Michelle F. Sener; Lakshmi Mundada; Matthew Klos; Eric J. Devaney; Karen L. Vikstrom; Todd J. Herron; José Jalife

Applications of human induced pluripotent stem cell derived-cardiac myocytes (hiPSC-CMs) would be strengthened by the ability to generate specific cardiac myocyte (CM) lineages. However, purification of lineage-specific hiPSC-CMs is limited by the lack of cell marking techniques. Here, we have developed an iPSC-CM marking system using recombinant adenoviral reporter constructs with atrial- or ventricular-specific myosin light chain-2 (MLC-2) promoters. MLC-2a and MLC-2v selected hiPSC-CMs were purified by fluorescence-activated cell sorting and their biochemical and electrophysiological phenotypes analyzed. We demonstrate that the phenotype of both populations remained stable in culture and they expressed the expected sarcomeric proteins, gap junction proteins and chamber-specific transcription factors. Compared to MLC-2a cells, MLC-2v selected CMs had larger action potential amplitudes and durations. In addition, by immunofluorescence, we showed that MLC-2 isoform expression can be used to enrich hiPSC-CM consistent with early atrial and ventricular myocyte lineages. However, only the ventricular myosin light chain-2 promoter was able to purify a highly homogeneous population of iPSC-CMs. Using this approach, it is now possible to develop ventricular-specific disease models using iPSC-CMs while atrial-specific iPSC-CM cultures may require additional chamber-specific markers.


Physiological Reviews | 2008

Designing Heart Performance by Gene Transfer

Jennifer Davis; Margaret V. Westfall; DeWayne Townsend; Michael J. Blankinship; Todd J. Herron; Guadalupe Guerrero-Serna; Wang Wang; Eric J. Devaney; Joseph M. Metzger

The birth of molecular cardiology can be traced to the development and implementation of high-fidelity genetic approaches for manipulating the heart. Recombinant viral vector-based technology offers a highly effective approach to genetically engineer cardiac muscle in vitro and in vivo. This review highlights discoveries made in cardiac muscle physiology through the use of targeted viral-mediated genetic modification. Here the history of cardiac gene transfer technology and the strengths and limitations of viral and nonviral vectors for gene delivery are reviewed. A comprehensive account is given of the application of gene transfer technology for studying key cardiac muscle targets including Ca(2+) handling, the sarcomere, the cytoskeleton, and signaling molecules and their posttranslational modifications. The primary objective of this review is to provide a thorough analysis of gene transfer studies for understanding cardiac physiology in health and disease. By comparing results obtained from gene transfer with those obtained from transgenesis and biophysical and biochemical methodologies, this review provides a global view of cardiac structure-function with an eye towards future areas of research. The data presented here serve as a basis for discovery of new therapeutic targets for remediation of acquired and inherited cardiac diseases.


Circulation Research | 2007

Calcium-Independent Negative Inotropy by β-Myosin Heavy Chain Gene Transfer in Cardiac Myocytes

Todd J. Herron; Rene Vandenboom; Ekaterina V. Fomicheva; Lakshmi Mundada; Terri Edwards; Joseph M. Metzger

Increased relative expression of the slow molecular motor of the heart (&bgr;-myosin heavy chain [MyHC]) is well known to occur in many rodent models of cardiovascular disease and in human heart failure. The direct effect of increased relative &bgr;-MyHC expression on intact cardiac myocyte contractility, however, is unclear. To determine the direct effects of increased relative &bgr;-MyHC expression on cardiac contractility, we used acute genetic engineering with a recombinant adenoviral vector (AdMYH7) to genetically titrate &bgr;-MyHC protein expression in isolated rodent ventricular cardiac myocytes that predominantly expressed &agr;-MyHC (fast molecular motor). AdMYH7-directed &bgr;-MyHC protein expression and sarcomeric incorporation was observed as soon as 1 day after gene transfer. Effects of &bgr;-MyHC expression on myocyte contractility were determined in electrically paced single myocytes (0.2 Hz, 37°C) by measuring sarcomere shortening and intracellular calcium cycling. Gene transfer-based replacement of &agr;-MyHC with &bgr;-MyHC attenuated contractility in a dose-dependent manner, whereas calcium transients were unaffected. For example, when &bgr;-MyHC expression accounted for ≈18% of the total sarcomeric myosin, the amplitude of sarcomere-length shortening (nanometers, nm) was depressed by 42% (151.0±10.7 [control] versus 87.0±5.4 nm [AdMYH7 transduced]); and genetic titration of &bgr;-MyHC, leading to 38% &bgr;-MyHC content, attenuated shortening by 57% (138.9±13.0 versus 59.7±7.1 nm). Maximal isometric cross-bridge cycling rate was also slower in AdMYH7-transduced myocytes. Results indicate that small increases of &bgr;-MyHC expression (18%) have Ca2+ transient-independent physiologically relevant effects to decrease intact cardiac myocyte function. We conclude that &bgr;-MyHC is a negative inotrope among the cardiac myofilament proteins.


The FASEB Journal | 2012

A null mutation of the neuronal sodium channel NaV1.6 disrupts action potential propagation and excitation-contraction coupling in the mouse heart

Sami F. Noujaim; Kuljeet Kaur; Michelle L. Milstein; Julie M. Jones; Philip B. Furspan; Daniel Jiang; David S. Auerbach; Todd J. Herron; Miriam H. Meisler; José Jalife

Evidence supports the expression of brain‐type sodium channels in the heart. Their functional role, however, remains controversial. We used global NaV1.6‐null mice to test the hypothesis that NaV1.6 contributes to the maintenance of propagation in the myocardium and to excitation‐contraction (EC) coupling. We demonstrated expression of transcripts encoding full‐length NaV1.6 in isolated ventricular myocytes and confirmed the striated pattern of NaV1.6 fluorescence in myocytes. On the ECG, the PR and QRS intervals were prolonged in the null mice, and the Ca2+ transients were longer in the null cells. Under patch clamping, at holding potential (HP) = –120 mV, the peak INa was similar in both phenotypes. However, at HP = –70 mV, the peak INa was smaller in the nulls. In optical mapping, at 4 mM [K+]o, 17 null hearts showed slight (7%) reduction of ventricular conduction velocity (CV) compared to 16 wild‐type hearts. At 12 mM [K+]o, CV was 25% slower in a subset of 9 null vs. 9 wild‐type hearts. These results highlight the importance of neuronal sodium channels in the heart, whereby NaV1.6 participates in EC coupling, and represents an intrinsic depolarizing reserve that contributes to excitation.—Noujaim, S. F., Kaur, K., Milstein, M., Jones, J. M., Furspan, P., Jiang, D., Auerbach, D. S., Herron, T., Meisler, M. H., Jalife, J. A null mutation of the neuronal sodium channel NaV1.6 disrupts action potential propagation and excitation‐contraction coupling in the mouse heart. FASEB J. 26, 63–72 (2012). www.fasebj.org

Collaboration


Dive into the Todd J. Herron's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A.M. Rocha

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hassan Musa

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Jianhua Zhang

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge