Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Todd Kitten is active.

Publication


Featured researches published by Todd Kitten.


Journal of Bacteriology | 2007

Genome of the Opportunistic Pathogen Streptococcus sanguinis

Ping Xu; João M. P. Alves; Todd Kitten; Arunsri Brown; Zhenming Chen; Luiz Shozo Ozaki; Patricio Manque; Myrna G. Serrano; Daniela Puiu; Stephanie L. Hendricks; Yingping Wang; Michael D. Chaplin; Doruk Akan; Sehmi Paik; Darrell L. Peterson; Francis L. Macrina; Gregory A. Buck

The genome of Streptococcus sanguinis is a circular DNA molecule consisting of 2,388,435 bp and is 177 to 590 kb larger than the other 21 streptococcal genomes that have been sequenced. The G+C content of the S. sanguinis genome is 43.4%, which is considerably higher than the G+C contents of other streptococci. The genome encodes 2,274 predicted proteins, 61 tRNAs, and four rRNA operons. A 70-kb region encoding pathways for vitamin B(12) biosynthesis and degradation of ethanolamine and propanediol was apparently acquired by horizontal gene transfer. The gene complement suggests new hypotheses for the pathogenesis and virulence of S. sanguinis and differs from the gene complements of other pathogenic and nonpathogenic streptococci. In particular, S. sanguinis possesses a remarkable abundance of putative surface proteins, which may permit it to be a primary colonizer of the oral cavity and agent of streptococcal endocarditis and infection in neutropenic patients.


Journal of Bacteriology | 2003

The sloABCR Operon of Streptococcus mutans Encodes an Mn and Fe Transport System Required for Endocarditis Virulence and Its Mn-Dependent Repressor

Sehmi Paik; Arunsri Brown; Cindy L. Munro; Cynthia Nau Cornelissen; Todd Kitten

Streptococcus mutans belongs to the viridans group of oral streptococci, which is the leading cause of endocarditis in humans. The LraI family of lipoproteins in viridans group streptococci and other bacteria have been shown to function as virulence factors, adhesins, or ABC-type metal transporters. We previously reported the identification of the S. mutans LraI operon, sloABCR, which encodes components of a putative metal uptake system composed of SloA, an ATP-binding protein, SloB, an integral membrane protein, and SloC, a solute-binding lipoprotein, as well as a metal-dependent regulator, SloR. We report here the functional analysis of this operon. By Western blotting, addition of Mn to the growth medium repressed SloC expression in a wild-type strain but not in a sloR mutant. Other metals tested had little effect. Cells were also tested for aerobic growth in media stripped of metals then reconstituted with Mg and either Mn or Fe. Fe at 10 micro M supported growth of the wild-type strain but not of a sloA or sloC mutant. Mn at 0.1 micro M supported growth of the wild-type strain and sloR mutant but not of sloA or sloC mutants. The combined results suggest that the SloABC proteins transport both metals, although the SloR protein represses this system only in response to Mn. These conclusions are supported by (55)Fe uptake studies with Mn as a competitor. Finally, a sloA mutant demonstrated loss of virulence in a rat model of endocarditis, suggesting that metal transport is required for endocarditis pathogenesis.


Infection and Immunity | 2000

Genetic Characterization of a Streptococcus mutans LraI Family Operon and Role in Virulence

Todd Kitten; Cindy L. Munro; Suzanne M. Michalek; Francis L. Macrina

ABSTRACT Proteins belonging to the LraI (for “lipoprotein receptor antigen”) family function as adhesins in several streptococci, as a virulence factor for endocarditis in at least one of these species, and potentially as metal transporters in many bacteria. We have identified and characterized the chromosomal locus containing the LraI family gene (designated sloC) from Streptococcus mutans, an agent of dental caries and endocarditis in humans. Northern blot analysis indicated that sloC is cotranscribed with three other genes. As with other LraI operons, the sloA andsloB genes apparently encode components of an ATP-binding cassette transport system. The product of the fourth gene,sloR, has homology to the metal-dependent regulator fromCorynebacterium diphtheriae, DtxR. A potential binding site for SloR was identified upstream from the sloABCR operon and was conserved upstream from LraI operons in several other streptococci. Potential SloR homologs were identified in the unfinished genomic sequences from two of these, S. pneumoniae andS. pyogenes. Mutagenesis of sloC in S. mutans resulted in apparent loss of expression of the entire operon as assessed by Northern blot analysis. The sloCmutant was indistinguishable from its wild-type parent in a gnotobiotic rat model of caries but was significantly less virulent in a rat model of endocarditis. Virulence for endocarditis was restored by correction of the sloC mutation but not by provision of thesloC gene in trans, suggesting that virulence requires the expression of other genes in the sloC operon.


Scientific Reports | 2011

Genome-wide essential gene identification in Streptococcus sanguinis

Ping Xu; Lei Chen; Xiaojing Wang; Yuetan Dou; Jerry Z. Xu; Jenishkumar R. Patel; Victoria Stone; My Trinh; Karra Evans; Todd Kitten; Danail Bonchev; Gregory A. Buck

A clear perception of gene essentiality in bacterial pathogens is pivotal for identifying drug targets to combat emergence of new pathogens and antibiotic-resistant bacteria, for synthetic biology, and for understanding the origins of life. We have constructed a comprehensive set of deletion mutants and systematically identified a clearly defined set of essential genes for Streptococcus sanguinis. Our results were confirmed by growing S. sanguinis in minimal medium and by double-knockout of paralogous or isozyme genes. Careful examination revealed that these essential genes were associated with only three basic categories of biological functions: maintenance of the cell envelope, energy production, and processing of genetic information. Our finding was subsequently validated in two other pathogenic streptococcal species, Streptococcus pneumoniae and Streptococcus mutans and in two other gram-positive pathogens, Bacillus subtilis and Staphylococcus aureus. Our analysis has thus led to a simplified model that permits reliable prediction of gene essentiality.


Infection and Immunity | 2008

Identification of Streptococcus sanguinis Genes Required for Biofilm Formation and Examination of Their Role in Endocarditis Virulence

Todd Kitten; Zhenming Chen; Sehmi P. Lee; Cindy L. Munro; Ping Xu

ABSTRACT Streptococcus sanguinis is one of the pioneers in the bacterial colonization of teeth and is one of the most abundant species in the oral biofilm called dental plaque. S. sanguinis is also the most common viridans group streptococcal species implicated in infective endocarditis. To investigate the association of biofilm and endocarditis, we established a biofilm assay and examined biofilm formation with a signature-tagged mutagenesis library of S. sanguinis. Four genes that have not previously been associated with biofilm formation in any other bacterium, purB, purL, thrB, and pyrE, were putatively identified as contributing to in vitro biofilm formation in S. sanguinis. By examining 800 mutants for attenuation in the rabbit endocarditis model and for reduction in biofilm formation in vitro, we found some mutants that were both biofilm defective and attenuated for endocarditis. However, we also identified mutants with only reduced biofilm formation or with only attenuation in the endocarditis model. This result indicates that the ability to form biofilms in vitro is not associated with endocarditis virulence in vivo in S. sanguinis.


Journal of Bacteriology | 2009

Contribution of Lipoproteins and Lipoprotein Processing to Endocarditis Virulence in Streptococcus sanguinis

Sankar Das; Taisei Kanamoto; Ping Xu; Takeshi Unoki; Cindy L. Munro; Todd Kitten

Streptococcus sanguinis is an important cause of infective endocarditis. Previous studies have identified lipoproteins as virulence determinants in other streptococcal species. Using a bioinformatic approach, we identified 52 putative lipoprotein genes in S. sanguinis strain SK36 as well as genes encoding the lipoprotein-processing enzymes prolipoprotein diacylglyceryl transferase (lgt) and signal peptidase II (lspA). We employed a directed signature-tagged mutagenesis approach to systematically disrupt these genes and screen each mutant for the loss of virulence in an animal model of endocarditis. All mutants were viable. In competitive index assays, mutation of a putative phosphate transporter reduced in vivo competitiveness by 14-fold but also reduced in vitro viability by more than 20-fold. Mutations in lgt, lspA, or an uncharacterized lipoprotein gene reduced competitiveness by two- to threefold in the animal model and in broth culture. Mutation of ssaB, encoding a putative metal transporter, produced a similar effect in culture but reduced in vivo competiveness by >1,000-fold. [(3)H]palmitate labeling and Western blot analysis confirmed that the lgt mutant failed to acylate lipoproteins, that the lspA mutant had a general defect in lipoprotein cleavage, and that SsaB was processed differently in both mutants. These results indicate that the loss of a single lipoprotein, SsaB, dramatically reduces endocarditis virulence, whereas the loss of most other lipoproteins or of normal lipoprotein processing has no more than a minor effect on virulence.


Infection and Immunity | 2002

Vaccination with FimA from Streptococcus parasanguis Protects Rats from Endocarditis Caused by Other Viridans Streptococci

Todd Kitten; Cindy L. Munro; Aijuan Wang; Francis L. Macrina

ABSTRACT The FimA protein of Streptococcus parasanguis is a virulence factor in the rat model of endocarditis, and immunization with FimA protects rats against homologous bacterial challenge. Because FimA-like proteins are widespread among the oral streptococci, the leading cause of native valve endocarditis, we evaluated the ability of this vaccinogen to protect rats when challenged by other streptococcal species. Here we report that FimA vaccination produced antibodies that cross-reacted with and protected against challenge by the oral streptococci S. mitis, S. mutans, and S. salivarius. FimA thus has promise as a vaccinogen to control infective endocarditis caused by oral streptococci.


Infection and Immunity | 2008

EmaA, a Potential Virulence Determinant of Aggregatibacter actinomycetemcomitans in Infective Endocarditis

Gaoyan Tang; Todd Kitten; Cindy L. Munro; George C. Wellman; Keith P. Mintz

ABSTRACT The gram-negative fastidious human oropharyngeal Aggregatibacter actinomycetemcomitans is implicated in the etiology of infective endocarditis. EmaA, an oligomeric coiled-coil adhesin homologous to YadA of Yersinia enterocolitica, was hypothesized to mediate the interaction of A. actinomycetemcomitans with collagen. Collagen, the most abundant protein in human bodies and the main component of extracellular matrix (ECM), predominates in the supporting tissue of cardiac valves. To extend our earlier studies using purified collagen to determine bacterial binding activities, we developed a tissue model using rabbit cardiac valves to investigate the interaction of A. actinomycetemcomitans with native collagen. The resected mitral valves, with or without removal of the endothelium, were incubated with equivalent numbers of the wild type and the isogenic emaA mutant defective in collagen binding. There was no difference in binding between the wild-type and the mutant strains when the endothelium remained intact. However, the emaA mutant was fivefold less effective than the wild-type strain in colonizing the exposed ECM. A 10-fold increase in the binding of the wild-type strain to ECM was observed compared with the intact endothelium. Similar observations were replicated in an in vivo endocarditis rabbit model; the emaA mutant was 10-fold less effective in the initial infection of the traumatized aortic valve. Colocalization studies indicated that A. actinomycetemcomitans bound to type I collagen. A. actinomycetemcomitans preferentially colonized the ECM and, together with the evidence that EmaA interacts with the native collagen, suggested that the adhesin is likely a potential virulence determinant of the bacterium in the initiation of infective endocarditis.


Infection and Immunity | 2009

Comprehensive Evaluation of Streptococcus sanguinis Cell Wall-Anchored Proteins in Early Infective Endocarditis

Lauren Senty Turner; Taisei Kanamoto; Takeshi Unoki; Cindy L. Munro; Hui Wu; Todd Kitten

ABSTRACT Streptococcus sanguinis is a member of the viridans group of streptococci and a leading cause of the life-threatening endovascular disease infective endocarditis. Initial contact with the cardiac infection site is likely mediated by S. sanguinis surface proteins. In an attempt to identify the proteins required for this crucial step in pathogenesis, we searched for surface-exposed, cell wall-anchored proteins encoded by S. sanguinis and then used a targeted signature-tagged mutagenesis (STM) approach to evaluate their contributions to virulence. Thirty-three predicted cell wall-anchored proteins were identified—a number much larger than those found in related species. The requirement of each cell wall-anchored protein for infective endocarditis was assessed in the rabbit model. It was found that no single cell wall-anchored protein was essential for the development of early infective endocarditis. STM screening was also employed for the evaluation of three predicted sortase transpeptidase enzymes, which mediate the cell surface presentation of cell wall-anchored proteins. The sortase A mutant exhibited a modest (∼2-fold) reduction in competitiveness, while the other two sortase mutants were indistinguishable from the parental strain. The combined results suggest that while cell wall-anchored proteins may play a role in S. sanguinis infective endocarditis, strategies designed to interfere with individual cell wall-anchored proteins or sortases would not be effective for disease prevention.


Molecular Microbiology | 2014

The relationship of the lipoprotein SsaB, manganese and superoxide dismutase in Streptococcus sanguinis virulence for endocarditis

Katie E. Crump; Brian Bainbridge; Sarah Brusko; Lauren Senty Turner; Victoria Stone; Ping Xu; Todd Kitten

Streptococcus sanguinis colonizes teeth and is an important cause of infective endocarditis. Our prior work showed that the lipoprotein SsaB is critical for S. sanguinis virulence for endocarditis and belongs to the LraI family of conserved metal transporters. In this study, we demonstrated that an ssaB mutant accumulates less manganese and iron than its parent. A mutant lacking the manganese‐dependent superoxide dismutase, SodA, was significantly less virulent than wild‐type in a rabbit model of endocarditis, but significantly more virulent than the ssaB mutant. Neither the ssaB nor the sodA mutation affected sensitivity to phagocytic killing or efficiency of heart valve colonization. Animal virulence results for all strains could be reproduced by growing bacteria in serum under physiological levels of O2. SodA activity was reduced, but not eliminated in the ssaB mutant in serum and in rabbits. Growth of the ssaB mutant in serum was restored upon addition of Mn2+ or removal of O2. Antioxidant supplementation experiments suggested that superoxide and hydroxyl radicals were together responsible for the ssaB mutants growth defect. We conclude that manganese accumulation mediated by the SsaB transport system imparts virulence by enabling cell growth in oxygen through SodA‐dependent and independent mechanisms.

Collaboration


Dive into the Todd Kitten's collaboration.

Top Co-Authors

Avatar

Ping Xu

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Cindy L. Munro

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Victoria Stone

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Bin Zhu

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Fadi El-Rami

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Francis L. Macrina

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Lauren Senty Turner

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Sankar Das

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Sehmi Paik

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Taisei Kanamoto

St. Marianna University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge